Volume 38 Issue 2
Mar.  2018
Turn off MathJax
Article Contents
ZHOU Yi, ZHANG Yuannong, JIANG Chunhua, ZHAO Zhengyu, LIU Jing. Comparison of Short-time Prediction of f0F2 Using Kalman Filter and Autocorrelation Methodormalsize[J]. Journal of Space Science, 2018, 38(2): 178-187. doi: 10.11728/cjss2018.02.178
Citation: ZHOU Yi, ZHANG Yuannong, JIANG Chunhua, ZHAO Zhengyu, LIU Jing. Comparison of Short-time Prediction of f0F2 Using Kalman Filter and Autocorrelation Methodormalsize[J]. Journal of Space Science, 2018, 38(2): 178-187. doi: 10.11728/cjss2018.02.178

Comparison of Short-time Prediction of f0F2 Using Kalman Filter and Autocorrelation Methodormalsize

doi: 10.11728/cjss2018.02.178
  • Received Date: 2017-06-29
  • Rev Recd Date: 2017-11-23
  • Publish Date: 2018-03-15
  • f0F2 forecast is a significant research aspect in ionospheric study, and much work has been done to improve its prediction performance. In this paper, f0F2 data from four ionospheric observation stations (Beijing, Changchun, Qingdao and Suzhou) in 2011 are used to predict f0F2 one hour in advance with the method of Kalman filter and autocorrelation analysis. Furthermore, comparisons are carried out between ionosonde observation, the values predicted by International Ionospheric Reference Model (IRI), and the estimated values of Kalman filter and autocorrelation method. The results are described as follows. For the method of Kalman filter, its Root Mean Square Error (RMSE) and Relative Error (RE) are 0.532MHz and 8.11% respectively. The RMSE and RE values are reduced by 1.035MHz and 14.58% compared with the corresponding values obtained by IRI. In terms of autocorrelation analysis, its RMSE and RE are 0.967MHz and 11.46%, and are reduced by 1.035MHz and 11.23% compared with the corresponding values obtained by IRI. It can be concluded that the prediction precisions of above-mentioned two methods have a great promotion compared with the IRI results. Moreover, further comparisons of these three methods are carried out during a geomagnetic storm. Experimental results indicate that Kalman filter method is better than autocorrelation analysis method and IRI model, which might provide suggestions for choosing a method for short-term prediction of f0F2.

     

  • loading
  • [1]
    XIONG Nianlu, TANG Cunchen, LI Xingjian, et al. Introduction to Ionosphere Physics[M]. Wuhan:Wuhan University Press, 1999
    [2]
    BILITZA D, REINISCH B W. International reference ionosphere[J]. Planet. Space Sci., 1992, 40(4):735-772
    [3]
    XU Tong, WU Zhensen, WU Jian, et al. Solar cycle variation and single-station model of the monthly median f0F2[J]. Chin. J. Geophys., 2008, 51(5):1296-1303(徐彤, 吴振森, 吴健, 等. f0F2月中值太阳循环变化及单站谱模型研究[J]. 地球物理学报, 2008, 51(5):1296-1303)
    [4]
    (刘瑞源, 吴健, 张北辰, 等. 电离层天气预报研究进展[J]. 电波科学学报, 2004, 19(S):35-40

    LIU Ruiyuan, WU Jian, ZHANG Beichen, et al. Progress of ionospheric weather forecast[J]. Chin. J. Radio Sci., 2004, 19(S):35-40
    [5]
    MUHTAROV P, KUTIEV I. Autocorrelation method for temporal interpolation and short-term prediction of ionospheric data[J]. Radio Sci., 1999, 34(2):459-464
    [6]
    LIU Ruiyuan, LIU Shunlin, XU Zhonghua, et al. Application of autocorrelation method on ionospheric short-term forecasting in China[J]. Chin. Sci. Bull., 2006, 51(3):352-357(刘瑞源, 刘顺林, 徐中华, 等. 自相关分析法在中国电离层短期预报中的应用[J]. 科学通报, 2005, 50(24):2781-2785)
    [7]
    LIU Wen, JIAO Peinan. Prediction of disturbances in the ionosphere by using the artificial neural network f0F2[J]. Chin. J. Geophys., 2001, 44(1):24-30(柳文, 焦培南. 利用人工神经网络预测电离层F2层骚扰[J]. 地球物理学报, 2001, 44(1):24-30)
    [8]
    CHEN Yanhong, XUE Bingsen, LI Libin. Forecasting of ionospheric critical frequency using neural network[J]. Chin. J. Space Sci., 2005, 25(2):99-103(陈艳红, 薛炳森, 李利斌. 利用神经网络预报电离层f0 F2[J]. 空间科学学报, 2005, 25(2):99-103)
    [9]
    KOUTROUMBAS K, BELEHAKI A. Onestep ahead prediction of f0F2 using time series forecasting techniques[J]. Ann. Geophys., 2005, 23(9):3035-3042
    [10]
    CHEN Chun, WU Zhensen, ZHAO Zhenwei, et al. A short-term f0F2 forecasting method based on neural network techniques[J]. Chin. J. Radio Sci., 2008, 23(4):708-712(陈春, 吴振森, 赵振维, 等. 基于神经网络技术的f0F2短期预报方法[J]. 电波科学学报, 2008, 23(4):708-712)
    [11]
    KONG Qingyan, LIU Wen, FAN Junmei, et al. On the prediction of f0F2 using artificial neural networksf0F2[J]. Chin. J. Geophys., 2009, 52(6):1438-1443(孔庆颜, 柳文, 凡俊梅, 等. 利用人工神经网络预测电离层f0F2参数[J]. 地球物理学报, 2009, 52(6):1438-1443)
    [12]
    LI Meiling, HU Yaogai, ZHOU Chen, et al. On the short-term regional prediction of f0F2 based on the support vector machine[J]. J. Xidian Univ., 2015, 42(5):145-153, 206(李美玲, 胡耀垓, 周晨, 等. 支持向量机用于电离层f0F2的短期区域预报[J]. 西安电子科技大学学报:自然科学版, 2015, 42(5):145-153, 206)
    [13]
    SUN Shuji, BAN Panpan, ZHAO Zhenwei. The f0F2 Prediction model of ionospheric storm based on the support vector machine[C]//The 13th National Day Space Physics Symposium. Yinchuan:Chinese Society of Space Research. 2009:79(孙树计, 班盼盼, 赵振维. 基于支持向量机的暴时电离层f0F2预报模型[C]//第十三届全国日地空间物理学术研讨会. 银川:中国空间科学学会, 2009:79)
    [14]
    CHEN Chun, WU Zhensen, DING Zonghua, et al. Forecasting the ionospheric f0F2 parameter using a support vector machine technique[C]//Proceedings of the 38th COSPAR Scientific Assembly. Bremen, Germany, 2010:134-140
    [15]
    LIU Wen, JIAO Peinan, FENG Jing, et al. Method of similar days for Ionospheric parameter short-term forecasting[J]. Chin. J. Radio Sci., 2010, 25(2):240-247(柳文, 焦培南, 冯静, 等. 电离层参数的相似日短期预测方法[J]. 电波科学学报, 2010, 25(2):240-247)
    [16]
    XU Tong, WU Jian, WU Zhensen, et al. Short-time forecast of f0F2 based on ionospheric storm empirical model and Kalman filter[J]. Chin. J. Space Sci., 2009, 29(2):202-207(徐彤, 吴健, 吴振森, 等. 基于电离层暴时f0F2经验模型Kalman滤波短期预报[J]. 空间科学学报, 2009, 29(2):202-207)
    [17]
    CHEN Chun, WU Zhensen, SUN Shuji, et al. Application of the ensemble Kalman filter in short-term ionospheric forecast[J]. Chin. J. Space Sci., 2010, 30(2):148-152(陈春, 吴振森, 孙树计, 等. 集合卡尔曼滤波在电离层短期预报中的应用[J]. 空间科学学报, 2010, 30(2):148-153)
    [18]
    WANG Yong, YANG Junhua. Method for short-term forecasting of the ionospheric f0F2 based on grey theory[J]. Bull. Sci. Technol., 2015, 31(1):46-50(王勇, 杨军华. 基于灰理论的电离层f0F2短期预报方法[J]. 科技通报, 2015, 31(1):46-50)
    [19]
    WANG Xinfeng, LI Chenggeng. Probability and Mathematical Statistics[M]. Beijing:Tsinghua University Press, 2016
    [20]
    LU Ruhua, HE Yuban. Kalman filter Method and its application for weather forecast[J]. J. Appl. Meteorol. Sci., 1997, 8(1):34-42
    [21]
    ZHOU Chen, WANG Ruopeng, LOU Wenyu, et al. Preliminary investigation of real-time mapping of f0F2 in Northern China based on oblique ionosonde data[J]. J. Geophys. Res.:Space Phys., 2013, 118(5):2536-2544
    [22]
    LU Ruhua, XU Chuanyu. Calculation method for initial Value of Kalman filter and its application[J]. Quart. J. Appl. Meteor., 1997, 8(1):34-43
    [23]
    DANILOV A D. Ionospheric F-region response to geomagnetic disturbances[J]. Adv. Space Res., 2013, 52(3):343-366
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(809) PDF Downloads(779) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return