Volume 38 Issue 2
Mar.  2018
Turn off MathJax
Article Contents
YAO Zhigang, HONG Jun, HAN Zhigang, ZHAO Zengliang. Numerical Simulation of Typhoon-generated Gravity Waves Observed by Satellite and its Direct Validationormalsize[J]. Chinese Journal of Space Science, 2018, 38(2): 188-200. doi: 10.11728/cjss2018.02.188
Citation: YAO Zhigang, HONG Jun, HAN Zhigang, ZHAO Zengliang. Numerical Simulation of Typhoon-generated Gravity Waves Observed by Satellite and its Direct Validationormalsize[J]. Chinese Journal of Space Science, 2018, 38(2): 188-200. doi: 10.11728/cjss2018.02.188

Numerical Simulation of Typhoon-generated Gravity Waves Observed by Satellite and its Direct Validationormalsize

doi: 10.11728/cjss2018.02.188
  • Received Date: 2017-01-08
  • Rev Recd Date: 2017-06-25
  • Publish Date: 2018-03-15
  • To analyze the stratospheric gravity waves induced by strong convection, Typhoon Soulik is investigated by the mesoscale model WRF-ARW (3.5 Version), ECMWF and AIRS observations. The WRF model results show that strong stratospheric gravity waves are induced by Typhoon Soulik, and the background wind plays a great role in modulation of the gravity waves propagation. The wave spectrum analysis reveals that the horizontal wavelength is about 500km, the period is about 3~5h, and the vertical wavelengths are gradually stretched with height about 10~14km, 14~18km and 22~26km in the height of 20km, 30km and 40km. The momentum flux and wave drag are also analyzed. At last, the direct comparison of WRF, ECMWF and AIRS observations based on a radiative transfer model indicates that the stratospheric semicircular arc wave pattern, position and horizontal scale agree well. But there are also some differences among these data. The AIRS can detect more details than WRF and ECMWF data. The order of wave intensity is AIRS, WRF and ECMWF.

     

  • loading
  • [1]
    FRITTS D C, ALEXANDER M J. Gravity wave dynamics and effects in the middle atmosphere[J]. Rev. Geophys., 2003, 41(1):1003
    [2]
    YUE Jia, HOFFMANN L, ALEXANDER M J. Simultaneous observations of convective gravity waves from a ground-based airglow imager and the AIRS satellite experiment[J]. J. Geophys. Res., 2013, 118(8):3178-3191
    [3]
    SUZUKI S, VADAS S L, SHIOKAWA K, et al. Typhoon-induced concentric airglow structures in the mesopause region[J]. Geophys. Res. Lett., 2013, 40(22):5983-5987
    [4]
    YUE Jia, MILLER S D, HOFFMANN L, et al. Stratospheric and mesospheric concentric gravity waves over tropical cyclone Mahasen:joint AIRS and VⅡRS satellite observations[J]. J. Atmos. Solar-Terr. Phys., 2014, 119:83-90
    [5]
    XU Jiyao, LI Qinzeng, YUE Jia, et al. Concentric gravity waves over northern China observed by an airglow imager network and satellites[J]. J. Geophys. Res., 2015, 120(21):11058-11078
    [6]
    TSUTSUI M, OGAWA T. HF Doppler observation of ionospheric effects due to typhoons[J]. Rep. Ionosph. Space Res. Jpn., 1973, 27:121-123
    [7]
    LIU Yimou, WANG Jingsong, SUO Yicheng. Effects of typhoon on the ionosphere[J]. Adv. Geosci., 2006, 2:351-360
    [8]
    MAO Tian, WANG Jinsong, YANG Guanglin, et al. Effects of typhoon Matsaon ionospheric TEC[J]. Chin. Sci. Bull., 2010, 55(8):712-717(毛田, 王劲松, 杨光林, 等. 台风"麦莎"对电离层TEC的影响[J]. 科学通报, 2009, 54(24):3858-3863)
    [9]
    YU Tao, WANG Yungang, MAO Tian, et al. A case study of the variation of ionospheric parameter during typhoons at Xiamen[J]. Acta Meteor. Sin., 2010, 68(4):569-576(余涛, 王云冈, 毛田, 等. 台风期间厦门电离层变化的一次特例分析[J]. 气象学报, 2010, 68(4):569-576)
    [10]
    SHUAI Jing, ZHANG Shaodong, HUANG Chunming, et al. Climatology of global gravity wave activity and dissipation revealed by SABER/TIMED temperature observations[J]. Sci. China Tech., 2014, 57(5):998-1009
    [11]
    HERNÁNDEZ-PAJARES M, JUAN J M, SANZ J. Medium-scale traveling ionospheric disturbances affecting GPS measurements:spatial and temporal analysis[J]. J. Geophys. Res., 2006, 111(A7):A07S11
    [12]
    HUNGR J, TSAO Y D, LIU J M, et al. Lower thermospheric density fluctuations during the time period of Typhoon Dinah[C]//27th Aerospace Sciences Meeting. Reno, NV, USA:AIAA, 1989:10
    [13]
    MING F C, IBRAHIM C, BARTHE C, et al. Observation and a numerical study of gravity waves during tropical cyclone Ivan (2008)[J]. Atmos. Chem. Phys., 2014, 14(2):641-658
    [14]
    KIM S Y, CHUN H Y, BAIK J J. A numerical study of gravity waves induced by convection associated with Typhoon Rusa[J]. Geophys. Res. Lett., 2005, 32(24):L24816. DOI: 10.1029/2005GL024662
    [15]
    KIM S Y, CHUN H Y, WU D L. A study on stratospheric gravity waves generated by Typhoon Ewiniar:numerical simulations and satellite observations[J]. J. Geophys. Res., 2009, 114(D22):D22104. DOI: 10.1029/2009JD011971
    [16]
    CHEN Dan, CHEN Zeyu Y, LÜ Daren. Simulation of the stratospheric gravity waves generated by the Typhoon Matsa in 2005[J]. Sci. China Earth Sci., 2012, 55(4):602-610. DOI:10.1007/s11430-011-4303-1(陈丹, 陈泽宇, 吕达仁. 台风"麦莎" (Matsa)诱发平流层重力波的数值模拟[J]. 中国科学:地球科学, 2011, 41(12):1786-1794)
    [17]
    CHEN Dan, CHEN Zeyu, LÜ Daren. Spatiotemporal spectrum and momentum flux of the stratospheric gravity waves generated by a typhoon[J]. Sci. China Earth Sci., 2013, 56(1):54-62. DOI:10.1007/s11430-012-4502-4(陈丹, 陈泽宇, 吕达仁. 台风重力波的谱结构和动量通量特征分析[J]. 中国科学:地球科学, 2013, 43(5):874-882)
    [18]
    ALEXANDER M J, HOLTON J R. On the spectrum of vertically propagating gravity waves generated by a transient heat source[J]. Atmos. Chem. Phys. Dis., 2004, 4(1):1063-1090
    [19]
    ALEXANDER M J, TEITELBAUM H. Three-dimensional properties of Andes mountain waves observed by satellite:a case study[J]. J. Geophys. Res., 2011, 116(D23):D23110. DOI: 10.1029/2011JD016151
    [20]
    GONG J, WU D L, ECKERMANN S D. Gravity wave variances and propagation derived from AIRS radiances[J]. Atmos. Chem. Phys., 2012, 12(4):1701-1720
    [21]
    GONG Jie, YUE Jia, WU D L. Global survey of concentric gravity waves in AIRS images and ECMWF analysis[J]. J. Geophys. Res., 2015, 120(6):2210-2228
    [22]
    YAO Zengliang, ZHAO Zengliang, HAN Zhigang. Stratospheric gravity waves during summer over East Asia derived from AIRS observations[J]. Chin. J. Geophys., 2015, 58(4):1121-1134(姚志刚, 赵增亮, 韩志刚. AIRS观测的东亚夏季平流层重力波特征[J]. 地球物理学报, 2015, 58(4):1121-1134)
    [23]
    HONG Jun, YAO Zhigang, HAN Zhigang, et al. Numerical simulations and AIRS observations of stratospheric gravity waves induced by the Typhoon Muifa[J]. Chin. J. Geophys., 2015, 58(7):2283-2293(洪军, 姚志刚, 韩志刚, 等. 台风"梅花"诱发平流层重力波的数值模拟与AIRS观测[J]. 地球物理学报, 2015, 58(7):2283-2293)
    [24]
    ZHENG Chongwei, ZHOU Lin, SONG Shuai, et al. Simulation of the wave field caused by 1307 typhoon "Soulik"[J]. J. Xiamen Univ.:Nat. Sci., 2014, 53(2):257-262
    [25]
    LANE T P, KNIEVEL J C. Some effects of model resolution on simulated gravity waves generated by deep, mesoscale convection[J]. J. Atmos. Sci., 2005, 62(9):3408-3419
    [26]
    UNTCH A, MILLER M, HORTAL M, et al. Towards a global meso-scale model:the high-resolution system T799L91 and T399L62EPS[R]. Newsl. 108. Eur. Cent. for Medium-Range Weather Forecast. Reading, UK, 2006:6-13
    [27]
    PLOUGONVEN R, TEITELBAUM H. Comparison of a large-scale inertia-gravity wave as seen in the ECMWF analyses and from radiosondes[J]. Geophys. Res. Lett., 2003, 30(18):1954. DOI: 10.1029/2003GL017716
    [28]
    ALEXANDER M J, TEITELBAUM H. Observation and analysis of a large amplitude mountain wave event over the Antarctic peninsula[J]. J. Geophys. Res., 2007, 112(D21):D21103. DOI: 10.1029/2006JD008368
    [29]
    MLAWER E J, TAUBMAN S J, BROWN P D, et al. Radiative transfer for inhomogeneous atmospheres:RRTM, a validated correlated-k model for the longwave[J]. J. Geophys. Res., 1997, 102(D14):16663-16682
    [30]
    DUDHIA J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J]. J. Atmos. Sci., 1989, 46(20):3077-3107
    [31]
    KAIN J S. The Kain Fritsch convective parameterization:an update[J]. J. Appl. Meteor., 2004, 43(1):170-181
    [32]
    HONG Songyou, NOHY, DUDHIA J. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Mon. Wea. Rev., 2006, 134(9):2318-2341
    [33]
    ANDREWS D G, HOLTON J R, LEOVY C B. Middle Atmosphere Dynamics[M]. Orlando:Academic Press, 1987:189
    [34]
    LIU Xiao, XU Jiyao. Nonlinear interactions between gravity waves and background winds[J]. Prog. Nat. Sci., 2007, 17(6):639-644
    [35]
    SONG I S, CHUN H Y. Momentum flux spectrum of convectively forced internal gravity waves and its application to gravity wave drag parameterization. I:theory[J]. J. Atmos. Sci., 2005, 62(1):107-124
    [36]
    BERES J H, ALEXANDER M J, HOLTON J R. Effects of tropospheric wind shear on the spectrum of convectively generated gravity waves[J]. J. Atmos. Sci., 2002, 59(11):1805-1824
    [37]
    KIM S Y, CHUN H Y. Stratospheric gravity waves generated by Typhoon Saomai (2006):numerical modeling in a moving frame following the typhoon[J]. J. Atmos. Sci., 2010, 67(11):3617-3636
    [38]
    DEMARIA M. The effect of vertical shear on tropical cyclone intensity change[J]. J. Atmos. Sci., 1996, 53(14):2076-2087
    [39]
    GALLINA G M, VELDEN C S. Environmental vertical wind shear and tropical cyclone intensity change utilizing enhanced satellite derived wind information[C]//Preprints of the 25th Conference on Hurricanes and Tropical Meteorology. San Diego, CA:American Meteorological Society, 2002:172-173
    [40]
    KIM S Y, CHUN H Y. Effects of a convectively forced gravity wave drag parameterization on a mesoscale convective system simulated by a mesoscale model (MM5)[J]. J. Korean Meteor. Soc., 2007, 43(2):111-131
    [41]
    ZOU Xiaolei, WENG Fuzhong, TALLAPRAGADA V, et al. Satellite data assimilation of upper-level sounding channels in HWRF with two different model tops[J]. J. Meteor. Res., 2015, 29(1):1-27
    [42]
    WU D L, PREUSSE P, ECKERMANN S D, et al. Remote sounding of at mospheric gravity waves with satellite limb and nadir techniques[J]. Adv. Space Res., 2006, 37(12):2269-2277
    [43]
    AUMANN H H, CHAHINE M T, GAUTIER C, et al. AIRS/AMSU/HSB on the Aqua Mission:design, science objectives, data products, and processing systems[J]. IEEE Trans. Geosci. Remote Sens., 2003, 41(2):253-264
    [44]
    CHAHINE M T, PAGANO T S, AUMANN H H, et al. AIRS:improving weather forecasting and providing new data on greenhouse gases[J]. Bull. Am. Meteor. Soc., 2006, 87(7):911-926
    [45]
    HOFFMANN L, ALEXANDER M J. Occurrence frequency of convective gravity waves during the North American thunderstorm season[J]. J. Geophys. Res., 2010, 115(D20):D20111. DOI: 10.1029/2010JD014401
    [46]
    WU D L. Mesoscale gravity wave variances from AMSU-A radiances[J]. Geophys. Res. Lett., 2004, 31(12):L12114
    [47]
    LINDZEN R S. Turbulence and stress owing to gravity wave and tidal breakdown[J]. J. Geophys. Res., 1981, 86(C10):9707-9714
    [48]
    MINGF C, CHEN Z, ROUX F. Analysis of gravity-waves produced by intense tropical cyclones[J]. Ann. Geophys., 2010, 28(2):531-547
    [49]
    SCHROEDER S, PREUSSE P, ERN M, et al. Gravity waves resolved in ECMWF and measured by SABER[J]. Geophys. Res. Lett., 2009, 36(10):L10805. DOI: 10.1029/2008GL037054
    [50]
    LANE T P, SHARMAN R D, CLARK T L, et al. An investigation of turbulence generation mechanisms above deep convection[J]. J. Atmos. Sci., 2003, 60(10):1297-1321
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1093) PDF Downloads(854) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return