Volume 38 Issue 2
Mar.  2018
Turn off MathJax
Article Contents
PU Junyu, ZHENG Yong, CHEN Shaojie, LI Chonghui, WANG Dingwei, HE Donghan. Geocentric Position Extraction Algorithm for Earth Sensor Image of Lunar Roverormalsize[J]. Chinese Journal of Space Science, 2018, 38(2): 239-248. doi: 10.11728/cjss2018.02.239
Citation: PU Junyu, ZHENG Yong, CHEN Shaojie, LI Chonghui, WANG Dingwei, HE Donghan. Geocentric Position Extraction Algorithm for Earth Sensor Image of Lunar Roverormalsize[J]. Chinese Journal of Space Science, 2018, 38(2): 239-248. doi: 10.11728/cjss2018.02.239

Geocentric Position Extraction Algorithm for Earth Sensor Image of Lunar Roverormalsize

doi: 10.11728/cjss2018.02.239
  • Received Date: 2017-04-02
  • Rev Recd Date: 2017-10-09
  • Publish Date: 2018-03-15
  • The Earth is the largest visible celestial body on the moon, whose range of motion on the celestial sphere is small. Moreover, it has no phenomenon of rise and set. When lunar rover is exploring on the moon surface facing toward the Earth, the Earth sensor can be used to photograph the Earth, thus achieving long term autonomous celestial navigation. Geocentric position extraction algorithm for Earth image is one of the key techniques of celestial navigation using Earth sensor, which directly determines the precision of the sensor.In this paper, the Earth imaging law is analyzed by studying the projection model of Earth sensor lens. An algorithm for extracting the geocentric position of the Earth sensor image free from Earth phase change is presented. Two steps are proposed to realize full screening of the real edge of the Earth, including semi search method and cyclic search method, and then geocentric position can be fitted. The semi-physical simulation experiments show that the algorithm can effectively extract geocentric positions for different phase images and it earns the external average accuracy of 9.78"~16.68". Under the circumstance of random change of experimental conditions, the maximum difference of standard deviations of external accuracy exceeds no more than 0.98".


  • loading
  • [1]
    FANG Jiancheng, NING Xiaolin. Deep Space Probe Autonomous Celestial Navigation Methods[M]. Xi'an:Northwestern Polytechnical University Press, 2010:1-9(房建成, 宁晓琳. 深空探测器自主天文导航方法[M]. 西安:西北工业大学出版社, 2010:1-9)
    NING Xiaolin, FANG Jiancheng. A new autonomous celestial navigation method for deep space probe and its observability analysis[J]. Chin. J. Space Sci., 2005, 25(4):286-292(宁晓琳, 房建成. 一种深空探测器自主天文导航新方法及其可观测性分析[J]. 空间科学学报, 2005, 25(4):286-292)
    MA Youqing. Research on Navigation and Localization of CE-3 Lunar Rover[D]. Wuhan:Wuhan University, 2014(马友青. 嫦娥三号月面巡视探测器导航定位技术研究[D]. 武汉:武汉大学, 2014)
    WU Weiren, ZHOU Jianliang, WANG Baofeng, et al. Key technologies in the teleoperation of Chang'E-3"Jade Rabbit" rover[J]. Sci. Sin. Inform., 2014, 44(4):425-440(吴伟仁, 周建亮, 王保丰, 等. 嫦娥三号"玉兔号"巡视器遥操作中的关键技术[J]. 中国科学:信息科学, 2014, 44(4):425-440)
    YUE Fuzhan, CUI Pingyuan, CUI Hutao, et al. Earth sensor and accelerometer based autonomous heading detection algorithm research of lunar rover[J]. J. Astron., 2005, 26(5):553-557(岳富占, 崔平远, 崔祜涛, 等. 基于地球敏感器和加速度计的月球车自主定向算法研究[J]. 宇航学报, 2005, 26(5):553-557)
    WANG Yanbao, WANG Li, CAI Wei. The solution of moon center vector and distance for Ultra-Violet lunar sensor[J]. Control Eng. China, 2005, (3):9-15(王艳宝, 王立, 蔡伟. 紫外月球敏感器月心矢量及月心距求解[J]. 控制工程, 2005, (3):9-15)
    WANG Li, HAO Yuncai. Three axis attitude determination method research for lunar imaging sensor halfway to the moon[C]//Academic Conference of Committee of Deep Space Exploration Technology Chinese Society of Astronautics. Beijing:Chinese Society of Astronautics, 2005(王立, 郝云彩. 月球成像敏感器奔月段三轴定姿方法研究[C]//中国宇航学会深空探测技术专业委员第二届学术会议论文集. 北京:中国宇航学会, 2005)
    PARK K J, MORTARI D. Planet or moon image processing for spacecraft attitude estimation[J]. J. Electron. Imaging, 2008, 17(2):023020
    Mathematics Handbook Writing Group. Mathematics Handbook[M]. Beijing:Higher Education Press, 1979:289-290(数学手册编写组. 数学手册[M]. 北京:高等教育出版社, 1979:289-290)
    GHOSAL C, MEHROTRA R. Detection of composite edges[J]. IEEE Trans. Image Proc., 1994, 3(1):14-25
    YANG Bingbing. Study on Sub-Pixel Image Edge Detection Method[D]. Dalian:Dalian University of Technology, 2015(杨兵兵. 亚像素图像边缘检测方法研究[D]. 大连:大连理工大学, 2015)
    QU Yingdong, CUI Chengsong, CHEN Shanben, et al. A fast subpixel edge measurement method based on Sobel-Zernike moment operator[J]. Opto-Electron. Eng., 2003, 30(5):59-61(曲迎东, 崔成松, 陈善本, 等. 利用Sobel-Zernike矩算子的快速亚像素边缘检测方法[J]. 光电工程, 2003, 30(5):59-61)
    YANG Peng, XIE Li, LIU Jilin. Zernike moment based high-accuracy sun image centroid algorithm[J]. J. Astron., 2011, 32(9):1963-1970(杨鹏, 谢立, 刘济林. 基于Zernike矩的高精度太阳图像质心提取算法[J]. 宇航学报, 2011, 32(9):1963-1970)
    ZHAN Yinghu, ZHENG Yong, ZHANG Chao, et al. Image centroid algorithms for sun sensors with super wide field of view[J]. Acta Geodaet. Cartograph. Sin., 2015, 44(10):1078-1084(詹银虎, 郑勇, 张超, 等. 超大视场太阳敏感器图像质心提取算法[J]. 测绘学报, 2015, 44(10):1078-1084)
    GAO Shiyi, ZHAO Mingyang, ZHANG Lei, et al. Improved algorithm about subpixel edge detection of image based on Zernike orthogonal moments[J]. Acta Automat. Sin., 2008, 34(9):1163-1168(高世一, 赵明扬, 张雷, 等. 基于Zernike正交矩的图像亚像素边缘检测算法改进[J]. 自动化学报, 2008, 34(9):1163-1168)
    FITZGIBBON A W, PILU M, FISHER R B. Direct least squares fitting of ellipses[C]//Proceedings of the 13th International Conference on Pattern Recognition. Vienna, Austria:IEEE, 1996:253-257
    HALÍŘ R, FLUSSER J. Numerically stable direct least squares fitting of ellipses[C]//Proceedings of the 6th International Conference in Central Europe on Computer Graphics and Visualization. Plzen, Bory:WSCG, 1998
    GANDER W. Least squares with a quadratic constraint[J]. Numer. Math., 1980, 36(3):291-307
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(879) PDF Downloads(747) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint