Volume 38 Issue 3
May  2018
Turn off MathJax
Article Contents
XIAO Hui, ZHOU Qinghua. Gyroresonance between Fast Magnetosonic Waves and Particles in a Multi-ion Space Plasma[J]. Journal of Space Science, 2018, 38(3): 332-341. doi: 10.11728/cjss2018.03.332
Citation: XIAO Hui, ZHOU Qinghua. Gyroresonance between Fast Magnetosonic Waves and Particles in a Multi-ion Space Plasma[J]. Journal of Space Science, 2018, 38(3): 332-341. doi: 10.11728/cjss2018.03.332

Gyroresonance between Fast Magnetosonic Waves and Particles in a Multi-ion Space Plasma

doi: 10.11728/cjss2018.03.332
  • Received Date: 2017-04-12
  • Rev Recd Date: 2017-10-08
  • Publish Date: 2018-05-15
  • Fast Magnetosonic (MS) waves are right-hand polarized waves. They propagate both inside and outside the plasmasphere, and the wave vectors are almost perpendicular to the ambient magnetic field. Fast MS waves can lead to local electron acceleration, scattering of outer radiation belt energetic electrons, and scattering of energetic protons etc. Using the fully and high-density approximated dispersion relations, the dispersion curve of fast MS with different wave normal angle is analyzed, and the minimum resonant energy between MS waves and ions (H+, He+, and O+) are calculated. The results show that, as the wave normal angle is relatively small, the minimum resonant energy obtained by the high-density approximated and fully dispersion relation is quite close to each other in a high density and weak magnetic field space plasma. Remarkable error occurs when the high-density approximated dispersion relation is used in the low and medium density space plasma or when the wave normal angle is greater than 88°. Therefore, the fully dispersion relation must be used in these cases.


  • loading
  • [1]
    RUSSELL C T, HOLZER R E, SMITH E J. OGO 3 observations of ELF noise in the magnetosphere:2. The nature of the equatorial noise[J]. J. Geophys. Res., 1970, 75(4):755-768
    PERRAUT S, ROUX A, ROBERT P, et al. A systematic study of ULF waves above FH+ from GEOS 1 and 2 measurements and their relationships with proton ring distributions[J]. J. Geophys. Res., 1982, 87(A8):6219-6236
    NĚMEC F, SANTOLÍK O, GEREOVÁ K, et al. Initial results of a survey of equatorial noise emissions observed by the Cluster spacecraft[J]. Planet. Space Sci., 2005, 53(1-3):291-298
    TSURUTANI B T, FALKOWSKI B J, PICKETT J S, et al. Extremely intense ELF magnetosonic waves:a survey of polar observations[J]. J. Geophys. Res., 2014, 119(2):964-977
    POKHOTELOV D, LEFEUVRE F, HORNE R B, et al. Survey of ELF-VLF plasma waves in outer radiation belt observed by Cluster STAFF-SA experiment[J]. Ann. Geophys., 2008, 26(11):3269-3277
    MEREDITH N P, HORNE R B, ANDERSON R R. Survey of magnetosonic waves and proton ring distributions in the Earth's inner magnetosphere[J]. J. Geophys. Res., 2008, 113(A6):A06213
    ZHOU Meng, NI Binbin, HUANG Shiyong, et al. Observation of large-amplitude magnetosonic waves at dipolarization fronts[J]. J. Geophys. Res., 2014, 119(6):4335-4347
    CURTIS S A, WU C S. Gyroharmonic emissions induced by energetic ions in the equatorial plasmasphere[J]. J. Geophys. Res., 1979, 84(A6):2597-2607
    LIU Kaijun, GARY S P, WINSKE D. Excitation of magnetosonic waves in the terrestrial magnetosphere:particle-in-cell simulations[J]. J. Geophys. Res., 2011, 116(A7):A07212
    CHEN Lunjin, THORNE R M, JORDANOVA V K, et al. Global simulation of magnetosonic wave instability in the storm time magnetosphere[J]. J. Geophys. Res., 2010, 115(A11):A11222
    XIAO Fuliang, ZHOU Qinghua, HE Zhaoguo, et al. Three-dimensional ray tracing of fast magnetosonic waves[J]. J. Geophys. Res., 2012, 117(A6):A06208
    XIAO Fuliang, ZHOU Qinghua, HE Yihua, et al. Penetration of magnetosonic waves into the plasmasphere observed by the Van Allen Probes[J]. Geophys. Res. Lett., 2015, 42(18):7287-7294
    ZHOU Qinghua, XIAO Fuliang, YANG Chang, et al. Excitation of nightside magnetosonic waves observed by Van Allen Probes[J]. J. Geophys. Res., 2014, 119(11):9125-9133
    HORNE R B, THORNE R M, GLAUERT S A, et al. Electron acceleration in the Van Allen radiation belts by fast magnetosonic waves[J]. Geophys. Res. Lett., 2007, 34(17):L17107
    BORTNIK J, THORNE R M. Transit time scattering of energetic electrons due to equatorially confined magnetosonic waves[J]. J. Geophys. Res., 2010, 115(A7):A07213
    LI Jinxing, NI Binbin, XIE Lun, et al. Interactions between magnetosonic waves and radiation belt electrons:comparisons of quasi-linear calculations with test particle simulations[J]. Geophys. Res. Lett., 2014, 41(14):4828-4834
    HORNE R B, WHEELER G V, ALLEYNE H S C K. Proton and electron heating by radially propagating fast magnetosonic waves[J]. J. Geophys. Res., 2000, 105(A12):27597-27610
    XIAO Fuliang, ZONG Qiugang, WANG Yongfu, et al. Generation of proton aurora by magnetosonic waves[J]. Sci. Rep., 2014, 4:5190
    XIAO Fuliang, YANG Chang, SU Zhengpeng, et al. Wave-driven butterfly distribution of Van Allen belt relativistic electrons[J]. Nat. Commun., 2015, 6:8590
    STIX T H. Waves in Plasmas[M]. New York:American Institute of Physics, 1992:56-57
    LYONS L R. Pitch angle and energy diffusion coefficients from resonant interactions with ion-cyclotron and whistler waves[J]. J. Plasma Phys., 1974, 12(3):417-432
    ALBERT J M. Evaluation of quasi-linear diffusion coefficients for whistler mode waves in a plasma with arbitrary density ratio[J]. J. Geophys. Res., 2005, 110(A3):A03218
    SUMMERS D. Quasi-linear diffusion coefficients for field-aligned electromagnetic waves with applications to the magnetosphere[J]. J. Geophys. Res., 2005, 110(A8):A08213
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1643) PDF Downloads(4321) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint