Volume 38 Issue 3
May  2018
Turn off MathJax
Article Contents
TAN Longyu, WANG Weihua, SUN Jun, HAN Fei, PENG Yang, WANG Zhaolong. Autonomous Navigation Scheme of LEO Constellation Based on Inter-satellite Link and Magnetic Field[J]. Journal of Space Science, 2018, 38(3): 402-408. doi: 10.11728/cjss2018.03.402
Citation: TAN Longyu, WANG Weihua, SUN Jun, HAN Fei, PENG Yang, WANG Zhaolong. Autonomous Navigation Scheme of LEO Constellation Based on Inter-satellite Link and Magnetic Field[J]. Journal of Space Science, 2018, 38(3): 402-408. doi: 10.11728/cjss2018.03.402

Autonomous Navigation Scheme of LEO Constellation Based on Inter-satellite Link and Magnetic Field

doi: 10.11728/cjss2018.03.402
  • Received Date: 2017-02-20
  • Rev Recd Date: 2017-11-18
  • Publish Date: 2018-05-15
  • Compared to autonomous navigation of Low Earth Orbit (LEO) constellation based on inter-satellite link only, a method for autonomous navigation of LEO constellation combining inter-satellite link and geomagnetic measurement is proposed to solve the problem about overall rotation and drifting of LEO constellation. The absolute property of geomagnetic field is fully utilized. Spatial reference information is provided for LEO constellation by obtaining and analyzing the angular distance between the line-of-sight vectors of adjacent satellites in the same orbit of the LEO constellation, as well as the direction and module value of geomagnetic field. After non-rank deficient analysis, the state equation and measurement equation are established. The optimal estimation about the whole state of LEO constellation can be realized using Extended Kalman Filtering (EKF). The simulation results demonstrate that the position error is less than 20m and velocity error is less than 0.05m·s-1. The autonomous navigation of LEO constellation can last 180 days, which meets the application requirements.

     

  • loading
  • [1]
    United States Air Force Scientific Advisory Board. Report on Space Surveillance, Asteroids and Comets, and Space Debris[R]. Washington:United States Air Force, 1997:3-5
    [2]
    MEDEIROS D J, TRABAND M, TRIBBLE A, et al. Simulation based design for a shipyard manufacturing process[C]//Proceedings of Winter Simulation Conference. Orlando, Florida:IEEE, 2009, 2:1411-1414
    [3]
    HENDERSON T R, KATZ R H. Network simulation for LEO satellite networks[C]//18th International Communications Satellite Systems Conference and Exhibit. Oakland, CA:American Institute of Aeronautics and Astronautics, 2000:1120-1130
    [4]
    DEL RE E, FANTACCI R, GIAMBENE G. Characterization of user mobility in Low Earth Orbit mobile satellite systems[J]. Wirel. Netw., 2000, 6(3):165-179
    [5]
    LIU W, LI Z, GONG X. Study on combined orbit determination of navigation satellites with ground tracking observation and cross-link ranging observation[C]//Proceedings of the 22nd International Technical Meeting of the Satellite Division of the Institute of Navigation. Savannah G A:The Institute of Navigation, 2009:1561-1572
    [6]
    CAI Zhiwu, HAN Chunhao, CHEN Jinping, et al. Constellation rotation error analysis and control in long-term autonomous orbit determination for navigation satellites[J]. J. Astron., 2008, 29(2):522-528(蔡志武, 韩春好, 陈金平, 等. 导航卫星长期自主定轨的星座旋转误差分析与控制[J]. 宇航学报, 2008, 29(2):522-528)
    [7]
    RAJAN J A. Highlights of GPS Ⅱ-R autonomous navigation[C]//Proceedings of the 58th Annual Meeting of the Institute of Navigation and CIGTF 21st Guidance Test Symposium. New Mexico V A:Institute of Navigation, 2002:354-363
    [8]
    FERNÁNDEZ F A. Inter-satellite ranging and inter-satellite communication links for enhancing GNSS satellite broadcast navigation data[J]. Adv. Space Res., 2011, 47(5):786-801
    [9]
    PSIAKI M L, POWELL S P, KINHIER JR P M. The accuracy of the GPS-derived acceleration vector, a novel attitude reference[C]//Guidance, Navigation, and Control Conference and Exhibit. Portland, OR, U S A:AIAA, 1999:4073-4079
    [10]
    CAI Zhiwu, ZHAO Dongming, CHEN Jinping, et al. Research on autonomous orbit determination of navigation satellite based on crosslink range and orientation parameters constraining[J]. Geo-Spat. Inf. Sci., 2006, 9(1):18-23
    [11]
    GOLDENBERG F. Geomagnetic navigation beyond magnetic compass[C]//Position Location and Navigation Symposium. California, USA:IEEE, 2006
    [12]
    ZHOU Jianhua, XU Bo. Theory and Method of Heterogeneous Constellation Precise Orbit Determination and Autonomous Orbit Determination[M]. Beijing:Science Publishing Company, 2015:275-289(周建华, 徐波. 异构星座精密轨道确定与自主定轨的理论和方法[M]. 北京:科学出版社, 2015:275-289)
    [13]
    ŠIMANDL M, KRÁLOVEC J, TICHAVSKÝ P. Filtering, predictive, and smoothing Cramér-Rao bounds for discrete-time nonlinear dynamic systems[J]. Automatica, 2001, 37(11):1703-1716
    [14]
    XIONG Kai, WEI Chunling, LIU Liangdong. Research on the autonomous navigation of satellite constellation using pulsars[J]. J. Astron., 2008, 29(2):545-549(熊凯, 魏春岭, 刘良栋. 基于脉冲星的卫星星座自主导航技术研究[J]. 宇航学报, 2008, 29(2):545-549)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(905) PDF Downloads(485) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return