Volume 38 Issue 6
Nov.  2018
Turn off MathJax
Article Contents
YU Yang, WANG Shengwei, XU Zhaoxian, JIN Mingjie, YANG Shulin. Advances on Molecular and Biological Effects of Mammalian Cells in Microgravity Environment[J]. Chinese Journal of Space Science, 2018, 38(6): 891-899. doi: 10.11728/cjss2018.06.891
Citation: YU Yang, WANG Shengwei, XU Zhaoxian, JIN Mingjie, YANG Shulin. Advances on Molecular and Biological Effects of Mammalian Cells in Microgravity Environment[J]. Chinese Journal of Space Science, 2018, 38(6): 891-899. doi: 10.11728/cjss2018.06.891

Advances on Molecular and Biological Effects of Mammalian Cells in Microgravity Environment

doi: 10.11728/cjss2018.06.891
  • Received Date: 2017-09-11
  • Rev Recd Date: 2018-04-21
  • Publish Date: 2018-11-15
  • With the continuous development of manned space program, astronaut health problems, such as cardiovascular diseases, immuno-suppression, muscle wasting, and osteoporosis, etc., caused by microgravity have attracted extensive concern, and these astronaut-derived health problems have become a major obstacle to the exploration of space. Many studies have focused on the changes of body and cell in microgravity conditions. Recent studies have shown that cell degradation and changes in the cytoskeleton can be induced by microgravity, and a series of changes caused by microgravity at molecular level were also found. In this paper, the recent studies on the behavior of immune cells, endothelial cells, bone cells and cancer cells in microgravity condition are reviewed. The results can provide instruction and reference for the further study of the disease occurrence in microgravity conditions, and provide some ideas for the treatment of diseases caused by microgravity conditions.

     

  • loading
  • [1]
    BLABER E, MARÇAL H, BURNS B P. Bioastronautics: the influence of microgravity on astronaut health[J]. Astrobiology, 2010, 10(5):463-473
    [2]
    KONSTANTINOVA I, ANTROPOVA Y N, LEGENKOV V, et al. Study of reactivity of blood lymphoid cells in crew members of the Soyuz-6, Soyuz-7 and Soyuz-8 spaceships before and after flight(blatogenesis delay of lymphocytes)[J]. Space Biol. Med., 1973, 7(6):48-55
    [3]
    COGOLI A, TSCHOPP A, FUCHSBISLIN P. Cell sensitivity to gravity[J]. Science, 1984, 225(4658):228-230
    [4]
    COGOLIGREUTER M, LOVIS P, VADRUCCI S. Signal transduction in T cells: an overview[J]. J. Gravit. Physiol., 2004, 11(2):P53-56
    [5]
    COGOLI M, BECHLER B, COGOLI A, et al. Lymphocytes on sounding rockets[J]. Adv. Space Res., 1992, 12(1):141-144
    [6]
    COGOLIGREUTER M, SPANO A, SCIOLA L, et al. Influence of microgravity on mitogen binding, motility and cytoskeleton patterns of T lymphocytes and jurkat cells-experiments on sounding rockets[J]. Jpn. J. Aerospace Environ. Med., 1998, 35(2):27-39
    [7]
    MINAMI Y, KONO T, MIYAZAKI T, et al. The IL-2receptor complex: its structure, function, and target genes[J]. Annu. Rev. Immunol., 1993, 11(1):245-268
    [8]
    COGOLI A, BECHLER B, COGOLIGREUTER M, et al. Mitogenic signal transduction in Tlymphocytes in microgravity[J]. J. Leukocyte. Biol., 1993, 53(5):569-575
    [9]
    PIPPIA P, SCIOLA L, COGOLIGREUTER M, et al. Activation signals of T lymphocytes in microgravity[J]. J. Biotechnol., 1996, 47(2-3):215-222
    [10]
    WALTHER I, PIPPIA P, MELONI M A, et al. Simulated microgravity inhibits the genetic expression of interleu- kin-2 and its receptor in mitogen-activated T lymphocytes[J]. Febs. Lett., 1998, 436(1):115-118
    [11]
    BOONYARATANAKORNKIT J B, COGOLI A, LI C F, et al. Key gravity-sensitive signaling pathways drive T cell activation[J]. FASEB J., 2005, 19(12):2020-2022
    [12]
    GRIDLEY D S, SLATER J M, LUOOWEN X, et al. Spaceflight effects on T lymphocyte distribution, function and gene expression[J]. J. Appl. Physiol., 2009, 106(1):194-202
    [13]
    COOPER D, PELLIS N R. Suppressed PHA activation of T lymphocytes in simulated microgravity is restored by direct activation of protein kinase C[J]. J. Leukocyte. Biol., 1998, 63(5):550-562
    [14]
    COGOLI A. The effect of hypogravity and hypergravity on cells of the immune system[J]. J. Leukocyte. Biol., 1993, 54(3):259-268
    [15]
    MELONI M A, GALLERI G, PIPPIA P, et al. Cytoskeleton changes and impaired motility of monocytes at modelled low gravity[J]. Protoplasma, 2006, 229(2/3/4):243-249
    [16]
    HUGHESFULFORD M, SUGANO E, SCHOPPER T, et al. Early immune response and regulation of IL-2 receptor subunits[J]. Cell Signal., 2005, 17(9):1111-1124
    [17]
    INGBER D. How cells (might) sense microgravity[J]. FASEB J., 1999, 13:S3-S15
    [18]
    LEWIS M L, REYNOLDS J L, CUBANO L A, et al. Spaceflight alters microtubules and increases apoptosis in human lymphocytes (Jurkat)[J]. FASEB J., 1998, 12(11):1007-1018
    [19]
    HATTON J P, GAUBERT F, CAZENAVE J P, et al. Microgravity modifies protein kinase C isoform translocation in the human monocytic cell line U937 and human peripheral blood T-cells[J]. J. Cell Biochem., 2002, 87(1):39-50
    [20]
    SCHMITT D A, HATTON J P, EMOND C, et al. The distribution of protein kinase C in human leukocytes is altered in microgravity[J]. FASEB J., 1996, 10(14):1627-1634
    [21]
    LEWIS M L. The cytoskeleton, apoptosis, and gene expression in T lymphocytes and other mammalian cells exposed to altered gravity[J]. Adv. Space Biol. Med., 2002, 8:77-128
    [22]
    MACCARRONE M, BATTISTA N, MELONI M, et al. Creating conditions similar to those that occur during exposure of cells to microgravity induces apoptosis in human lymphocytes by 5-lipoxygenase-mediated mitochondrial uncoupling and cytochrome C release[J]. J. Leukocyte. Biol., 2003, 73(4):472-481
    [23]
    CRUCIAN B, STOWE R, MEHTA S, et al. Immune system dysregulation occurs during short duration spaceflight on board the space shuttle[J]. J. Clin. Immunol., 2013, 33(2):456-465
    [24]
    CRUCIAN B E, CUBBAGE M L, SAMS C F. Altered cytokine production by specific human peripheral blood cell subsets immediately following space flight[J]. J. Interf. Cytok. Res., 2000, 20(6):547-556
    [25]
    MILLS P J, MECK J V, WATERS W W, et al. Peripheral leukocyte subpopulations and catecholamine levels in astronauts as a function of mission duration[J]. Psychosom. Med., 2001, 63(6):886-890
    [26]
    RYKOVA M P, ANTROPOVA E N, LARINA I M, et al. Humoral and cellular immunity in cosmonauts after the ISS missions[J]. Acta Astron., 2008, 63(7-10):697-705
    [27]
    BURAVKOVA L B, RYKOVA M P, GRIGORIEVA V, et al. Cell interactions in microgravity: cytotoxic effects of natural killer cells in vitro[J]. J. Gravit. Physiol., 2004, 11(2):P177-180
    [28]
    LICATO L L, GRIMM E A. Multiple interleukin-2 signaling pathways differentially regulated by microgravity[J]. Immunopharmacology, 1999, 44(3):273-279
    [29]
    KAUR I, SIMONS E R, CASTRO V A, et al. Changes in neutrophil functions in astronauts[J]. Brain, Behav. Immun., 2004, 18(5):443-450
    [30]
    ZHANG Y, SANG C, PAULSEN K, et al. ICAM-1 expression and organization in human endothelial cells is sensitive to gravity[J]. Acta Astron., 2010, 67(9/10):1073-1080
    [31]
    KAPITONOVA M Y, KUZNETSOV S L, FROEMMING G R A, et al. Effects of space mission factors on the morphology and function of endothelial cells[J]. B Exp. Biol. Med., 2013, 154(6):796-801
    [32]
    MARIOTTI M, MAIER J A M. Gravitational unloading induces an anti-angiogenic phenotype in human microvascular endothelial cells[J]. J. Cell Biochem., 2008, 104(1):129-135
    [33]
    GRIMM D, BAUER J, KOSSMEHL P, et al. Simulated microgravity alters differentiation and increases apoptosis in human follicular thyroid carcinoma cells[J]. FASEB J., 2002, 16(6):604-606
    [34]
    KANG C Y, ZOU L, YUAN M, et al. Impact of simulated microgravity on microvascular endothelial cell apoptosis[J]. Eur. J. Appl. Physiol., 2011, 111(9):2131-2138
    [35]
    SHI F, WANG Y C, ZHAO T Z, et al. Effects of simulated microgravity on human umbilical vein endothelial cell angiogenesis and role of the PI3K-Akt-eNOS signal pathway[J]. Plos One, 2012, 7(7):e40365
    [36]
    HUANG Y, DAI Z Q, LING S K, et al. Gravity, a regulation factor in the differentiation of rat bone marrow mesenchymal stem cells[J]. J. Biomed. Sci., 2009, 16:87
    [37]
    SHEYN D, PELLED G, NETANELY D, et al. The effect of simulated microgravity on human mesenchymal stem cells cultured in an osteogenic differentiation system: a bioinformatics study[J]. Tiss. Eng. Part A, 2010, 16(11):3403-3412
    [38]
    GRIFFONI C, DI MOLFETTA S, FANTOZZI L, et al. Modification of proteins secreted by endothelial cells during modeled low gravity exposure[J]. J. Cell Biochem., 2011, 112(1):265-272
    [39]
    VERSARI S, LONGINOTTI G, BARENGHI L, et al. The challenging environment on board the International Space Station affects endothelial cell function by triggering oxidative stress through thioredoxin interacting protein overexpression: the ESA-SPHINX experiment[J]. FASEB. J., 2013, 27(11):4466-4475
    [40]
    SIAMWALA J H, MAJUMDER S, TAMILARASAN K P, et al. Simulated microgravity promotes nitric oxide-supported angiogenesis via the iNOScGMPPKG pathway in macrovascular endothelial cells[J]. Febs. Lett., 2010, 584(15):3415-3423
    [41]
    LEBLANC A D, SCHNEIDER V S, EVANS H J, et al. Bone mineral loss and recovery after 17 weeks of bed rest[J]. J. Bone. Miner. Res., 1990, 5(8):843-850.
    [42]
    ALEXANDRE C, VICO L. Pathophysiology of bone loss in disuse osteoporosis[J]. Joint Bone Spine, 2011, 78(6):572-576
    [43]
    LEBLANC A, SHACKELFORD L, SCHNEIDER V. Future human bone research in space[J]. Bone, 1998, 22(5):113S-116S
    [44]
    VICO L, COLLET P, GUIGNANDON A, et al. Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts[J]. Lancet, 2000, 355(9215):1607-1611
    [45]
    HUGHESFULFORD M, LEWIS M L. Effects of microgravity on osteoblast growth activation[J]. Exp. Cell Res., 1996, 224(1):103-109
    [46]
    HUGHESFULFORD M, RODENACKER K, JÜTTING U. Reduction of anabolic signals and alteration of osteoblast nuclear morphology in microgravity[J]. J. Cell Biochem., 2006, 99(2):435-449
    [47]
    NAKAMURA H, KUMEI Y, MORITA S, et al. Suppression of osteoblastic phenotypes and modulation of pro-and anti-apoptotic features in normal human osteoblastic cellsunder a vector-averaged gravity condition[J]. J. Med. Dent. Sci., 2003, 50(2):167-176
    [48]
    KUMEI Y, SHIMOKAWA H, KATANO H, et al. Microgravity induces prostaglandin E2 and interleukin-6 production in normal rat osteoblasts: role in bone demineralization[J]. J. Biotechnol., 1996, 47(2-3):313-324
    [49]
    CAPULLI M, RUFO A, TETI A, et al. Global transcriptome analysis in mouse calvarial osteoblasts highlights sets of genes regulated by modeled microgravity and identifies a "mechanoresponsive osteoblast gene signature"[J]. J. Cell Biochem., 2009, 107(2):240-252
    [50]
    PATEL M J, LIU W, SYKES M C, et al. Identification of mechanosensitive genes in osteoblasts by comparative microarray studies using the rotating wall vessel and the random positioning machine[J]. J. Cell Biochem., 2007, 101(3):587-599
    [51]
    XING W, BAYLINK D, KESAVAN C, et al. Global gene expression analysis in the bones reveals involvement of several novel genes and pathways in mediating an anabolic response of mechanical loading in mice[J]. J. Cell Biochem., 2005, 96(5):1049-1060
    [52]
    GUO Feima, DAI Zhongquan, WU Feng, et al. Bone-specific transcription factor Runx2 on the role of antagonistic bone loss in space[J]. Chin. J. Space Sci., 2011, 31(5):627-634 (郭飞马, 戴钟铨, 吴峰, 等. 吴峰骨特异性转录因子Runx2对抗空间骨丢失效应的初步研究[J]. 空间科学学报, 2011, 31(5):627-634)
    [53]
    HUANG Guopin, ZHENG Qiang, YANG Jinfeng, et al. Analysis of effects of simulated microgravity on signaling pathways involved in osteogenic differentiation of human mesenchymal stem cells[J]. Chin. J. Space Sci., 2008, 28(1):87-96 (黄国平, 郑强, 杨金凤, 等. 模拟微重力对人骨髓间充质干细胞向成骨细胞分化中细胞信号通路影响的分析[J]. 空间科学学报, 2008, 28(1):87-96)
    [54]
    KO Y J, ZAHARIAS R S, SEABOLD D A, et al. Osteoblast differentiation is enhanced in rotary cell culture simulated microgravity environments[J]. J. Prosthodont., 2007, 16(6):431-438
    [55]
    GRIMM D, KOSSMEHL P, SHAKIBAEI M, et al. Effects of simulated microgravity on thyroid carcinoma cells[J]. J. Gravit. Physiol., 2002, 9(1):253-258
    [56]
    INFANGER M, KOSSMEHL P, SHAKIBAEI M, et al. Longterm conditions of mimicked weightlessness influences the cytoskeleton in thyroid cells[J]. J. Gravit. Physiol., 2004, 11(2):169-172
    [57]
    TAGA M, YAMAUCHI K, ODLE J, et al. Melanoma growth and tumorigenicity in models of microgravity[J]. Aviat. Space Envir. Md., 2006, 77(11):1113-1116
    [58]
    IVANOVA K, EIERMANN P, TSIOCKAS W, et al. Natriuretic peptide-sensitive guanylyl cyclase expression is down-regulated in human melanoma cells at simulated weightlessness[J]. Acta Astron., 2011, 68(7/8):652-655
    [59]
    KANEKO T, SASAKI S, UMEMOTO Y, et al. Simulated conditions of microgravity increases progesterone production in I-10 cells of leydig tumor cell line[J]. Int. J. Urol., 2008, 15(3):245-250
    [60]
    XIANG Qing, FANG Qing, CHEN Zhihua, et al. Effects on physiological characteristics of tumor cell lines by space environment[J]. Chin. J. Space Sci., 2004, 24(5):388-393 (向青, 房青, 陈志华, 等. 空间环境对肿瘤细胞生理特性的影响[J]. 空间科学学报, 2004, 24(5):388-393)
    [61]
    MARRERO B, MESSINA J L, HELLER R. Generation of a tumor spheroid in a microgravity environment as a 3D model of melanoma[J]. In Vitro Cell. Dev-An., 2009, 45(9):523-534
    [62]
    BECKER J L, PREWETT T L, SPAULDING G F, et al. Three-dimensional growth and differentiation of ovarian tumor cell line in high aspect rotating-wall vessel: morphologic and embryologic considerations[J]. J. Cell Biochem., 1993, 51(3):283-289
    [63]
    BECKER J L. Women's health issues and space-based medical technologies[J]. Earth Space Rev., 1994, 3(2):15-19
    [64]
    CHANG T T, HUGHESFULFORD M. Monolayer and spheroid culture of human liver hepatocellular carcinoma cell line cells demonstrate distinct global gene expression patterns and functional phenotypes[J]. Tiss. Eng.:A, 2009, 15(3):559-567
    [65]
    GROSSE J, WEHLAND M, PIETSCH J, et al. Gravity-sensitive signaling drives 3-dimensional formation of multicellular thyroid cancer spheroids[J]. FASEB J., 2012, 26(12):5124-5140
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(956) PDF Downloads(448) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return