Volume 39 Issue 1
Jan.  2019
Turn off MathJax
Article Contents
MA Jie, XUE Bingsen, FANG Hanxian, WENG Libin, ZHOU Yaqin, XIA Jilu, LU Xiaoshan, SUN Zhiqiang. Formation Mechanism of Sub South Atlantic Anomaly Region Observed by FY-3A[J]. Journal of Space Science, 2019, 39(1): 69-75. doi: 10.11728/cjss2019.01.069
Citation: MA Jie, XUE Bingsen, FANG Hanxian, WENG Libin, ZHOU Yaqin, XIA Jilu, LU Xiaoshan, SUN Zhiqiang. Formation Mechanism of Sub South Atlantic Anomaly Region Observed by FY-3A[J]. Journal of Space Science, 2019, 39(1): 69-75. doi: 10.11728/cjss2019.01.069

Formation Mechanism of Sub South Atlantic Anomaly Region Observed by FY-3A

doi: 10.11728/cjss2019.01.069
  • Received Date: 2017-09-18
  • Rev Recd Date: 2018-04-26
  • Publish Date: 2019-01-15
  • Based on the proton flux distribution in the inner radiation belt obtained by FY-3A, it is found that the 3~5MeV energy channel shows a second anomalous region besides the South Atlantic Anomaly region. The anomaly zone is a sub-extreme area of proton flux, compared with the main South Atlantic Anomaly region, the new proton flux extremum is weaker and smaller, so it is called the sub South Atlantic Anomaly region. By selecting representative sample points in the main South Atlantic anomaly and sub South Atlantic anomaly areas, the formation mechanism of the sub South Atlantic Anomaly region is studied. The results show that the inner radiation belt proton flux approximately normally distributes with pitch angle, proton fluxes appear at a maximum near the 90° pitch angle; when the pitch angle is greater than 120° or less than 60°, the proton flux is almost zero. In addition, the proton flux in the main South Atlantic Anomaly region is completely anisotropic in each energy channel, and the proton flux in the sub South Atlantic Anomaly region tends to be isotropic as the energy channel increases. And this phenomenon is further verified by the NOAA observation data. Moreover, it is used to explain the formation mechanism of the sub South Atlantic Anomaly region.

     

  • loading
  • [1]
    ALLEN J A V. Observation of high intensity radiation by satellites 1958 Alpha and Gamma[J]. J. Jet Prop., 1958, 28(9):588-592
    [2]
    BRAUTIGAM D H. CRRES in review:space weather and its effects on technology[J]. J. Atmos. Solar-Terr. phys., 2002, 64(16):1709-1721
    [3]
    ZHAO Xue, CAI Zhenbo. Analysis on space environment and satellite anomaly in orbit[C]//17th Conference of the Space Exploration Committee of Chinese Society of Space Science. Beijing:Chinese Society of Space Science, 2004(赵雪, 蔡震波. 空间环境与卫星在轨异常分析[C]//中国空间科学学会空间探测专业委员会第十七次学术会议论文集. 北京:中国空间科学学会, 2004)
    [4]
    PU Zuyin, FANG Xiaohua, JIAO Weixin. The study of “space climate” of SAA in the inner radiation belt[J]. Sci. China A:Math., 2000, 1(濮祖荫, 方晓华, 焦维新. 内辐射带南大西洋异常区“空间气候”研究[J]. 中国科学:A, 2000, 1)
    [5]
    HUSTON S L, KAUFFMAN W. Space environments and effects:Trapped proton model, NASA/CR-2002-211784, NASA Marshall Spaceflight Center, Huntsville, AL, 2002
    [6]
    HEYNDERICKX D, KRUGLANSKI M, PIERRARD V, et al. A low altitude trapped proton model for solar minimum conditions based on SAMPEX/PET data[J]. IEEE Trans. Nucl. Sci., 1999, 46(6):1475-1480
    [7]
    ROEDER J L, CHEN M W, FENNELL J F, et al. Empirical models of the low-energy plasma in the inner magnetosphere[J]. Space Weather, 2005, 3(12):3-10
    [8]
    (陈贵福, 叶宗海, 朱光武, 等. 风云一号(B)星对内辐射带质子的观测结果[J]. 空间科学学报, 1993, 13(1):50-60

    CHEN Guifu, YE Zonghai, ZHU Guangwu, et al. The recent observational results of the geomagnetically trapped protons[J]. Chin. J. Space Sci., 1993, 13(1):50-60
    [9]
    (黄聪, 李嘉巍, 薛炳森, 等. 风云三号A/B星空间环境监测器对空间天气事件监测能力评估及其应用研究[J]. 气象科技进展, 2013, 3(4):126-135

    HUANG Cong, LI Jiawei, XUE Bingsen, et al. The capabilities and applications of Fengyun-3A/B SEM on monitoring space weather events[J]. Adv. Meteor. Sci. Technol., 2013, 3(4):126-135
    [10]
    WANG C Q, ZHANG X G, WANG S J, et al. Comparison of high energy particles observation results between FY-3A satellite and NOAA series satellites[J]. Chin. J. Space Sci., 2010(1):49-54(王春琴, 张贤国, 王世金, 等. FY-3A卫星与NOAA系列卫星高能带电粒子实测结果的比较[J]. 空间科学学报, 2010(1):49-54)
    [11]
    YANG Xiaochao, WANG Shijin, LIANG Jinbao, et al. Electron orientation detection design on sun-synchronous orbit[J]. J. Astron., 2012, 33(2):281-284(杨晓超, 王世金, 梁金宝, 等. 太阳同步轨道电子探测器的多方向设计研究[J]. 宇航学报, 2012, 33(2):281-284)
    [12]
    GINET G P, O'BRIEN T P, HUSTON S L, et al. AE9, AP9 and SPM:New models for specifying the trapped energetic particle and space plasma environment[J]. Space Sci. Rev., 2013, 179(1-4):579-615
    [13]
    14-4853-0
    [14]
    YAN Xingya, CHEN Hongfei, YU Xiangqian,et al. The southward and northward difference of proton flux in south Atlantic anomaly[J]. Chin. J. Space Sci., 2016, 36(6):888-896(闫兴亚, 陈鸿飞, 于向前, 等. 南大西洋异常区高能质子通量南北向差异[J]. 空间科学学报, 2016, 36(6):888-896)
    [15]
    JOHNSTON W R, O'BRIEN T P, HUSTON S L, et al. Recent updates to the AE9/AP9/SPM radiation belt and space plasma specification model[J]. IEEE Trans. Nucl. Sci., 2015, 62(6):2760-2766
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(688) PDF Downloads(326) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return