Volume 39 Issue 3
May  2019
Turn off MathJax
Article Contents
MENG Chen, LU Jianyong, WANG Ming, GU Chunli, JI Haisheng. Transport Time for the Geomagnetic Storm Caused by CME[J]. Chinese Journal of Space Science, 2019, 39(3): 303-309. doi: 10.11728/cjss2019.03.303
Citation: MENG Chen, LU Jianyong, WANG Ming, GU Chunli, JI Haisheng. Transport Time for the Geomagnetic Storm Caused by CME[J]. Chinese Journal of Space Science, 2019, 39(3): 303-309. doi: 10.11728/cjss2019.03.303

Transport Time for the Geomagnetic Storm Caused by CME

doi: 10.11728/cjss2019.03.303
  • Received Date: 2018-02-27
  • Rev Recd Date: 2018-06-29
  • Publish Date: 2019-05-15
  • The transport time is defined as the interval time between the occurrence of CME and the maximum value of the geomagnetic storm. In view of the 89 CME-Dst events collected from 1997 to 2015, the impact of CME speed, energy, and flare type on the transport time is analyzed. Using the non-linear fitting and the nonlinear regression of the Support Vector Machine (SVM), the Curve Fitting (CF) model and the Support Vector Machine (SVM) model for the CME transport time are built. In these models, 62 CME-Dst events during 1997-2006 are used as model input, and the remaining 27 CME-Dst events are used to test the model prediction. The results show that the prediction accuracies both of CF model and SVM model reach at about 85.2%, and the average absolute error of CF model is 13.77h while the SVM model is 13.88h. Comparing with the ECA model (its prediction accuracy is 77.8%, and the average absolute error is 14.55h), the accuracy of these two models is higher and the error is smaller than that of the ECA model. Therefore, CF model and SVM model can predict accurately the geomagnetic storm explosion with 1~5 days in advance.


  • loading
  • [1]
    SHEN F, FENG X S, WANG Y, et al. Three-dimensional MHD simulation of two coronal mass ejections' propagation and interaction using a successive magnetized plasma blobs model[J]. J. Geophys. Res.:Space Phys., 2011, 116(A9):103. DOI: 10.1029/2011JA016584
    SHEN F, WU S T, FENG X, et al. Acceleration and deceleration of coronal mass ejections during propagation and interaction[J]. J. Geophys. Res.:Space Phys., 2012, 117(A11):101. DOI: 10.1029/2012JA017776
    SHEN F, SHEN C L, ZHANG J, et al. Evolution of the 12 July 2012 CME from the Sun to the Earth:data-constrained three-dimensional MHD simulations[J]. J. Geophys. Res.:Space Phys., 2014, 119(9):7128-7141
    BURTON R K, MCPHERRON R L, RUSSELL C T. An empirical relationship between interplanetary conditions and Dst[J]. J. Geophys. Res., 1975, 80(31):4204-4214
    FENRICH F R, LUHMANN J G. Geomagnetic response to magnetic clouds of different polarity[J]. Geophys. Res. Lett., 1998, 25(15):2999-3002
    O'BRIEN T P, MCPHERRON R L. An empirical phase space analysis of ring current dynamics:Solar wind control of injection and decay[J]. J. Geophys. Res.:Space Phys., 2000, 105(A4):7707-7719
    TEMERIN M, LI X L. A new model for the prediction of Dst on the basis of the solar wind[J]. J. Geophys. Res.:Space Phys., 2002, 107(A12):SMP 31-1-SMP 31-8. DOI: 10.1029/2001JA007532
    WANG C B, CHAO J K, LIN C H. Influence of the solar wind dynamic pressure on the decay and injection of the ring current[J]. J. Geophys. Res.:Space Phys., 2003, 108(A9):1341. DOI: 10.1029/2003JA009851
    BOYNTON R J, BALIKHIN M A, BILLINGS S A, et al. Using the NARMAX OLS-ERR algorithm to obtain the most influential coupling functions that affect the evolution of the magnetosphere[J]. J. Geophys. Res.:Space Phys., 2011, 116(A5):218. DOI: 10.1029/2010JA015505
    LU J Y, PENG Y X, WANG M, et al. Support vector machine combined with distance correlation learning for Dst forecasting during intense geomagnetic storms[J]. Planet. Space Sci., 2016, 120:48-55
    KIM R S, CHO K S, MOON Y J, et al. An empirical model for prediction of geomagnetic storms using initially observed CME parameters at the Sun[J]. J. Geophys. Res., 2010, 115(A12). DOI: 10.1029/2010JA015322
    KIM R S, CHO K S, MOON Y J, et al. Forecast evaluation of the Coronal Mass Ejection (CME) geoeffectiveness using halo CMEs from 1997 to 2003[J]. J. Geophys. Res., 2005, 110(A11). DOI: 10.1029/2005JA011218
    SONG H, YURCHYSHYN V, YANG G et al. The automatic predictability of super geomagnetic storms from halo CMEs associated with large solar flares[J]. Solar Phys., 2006, 238(1):141-165
    GOPALSWAMY N, LARA A, LEPPING R P, et al. Interplanetary acceleration of coronal mass ejections[J]. Geophys. Res. Lett., 2000, 27(2):145-148. DOI: 10.1029/1999GL003639
    GOPALSWAMY N, LARA A, YASHIRO S, et al. Predicting the 1-AU arrival times of coronal mass ejections[J]. J. Geophys. Res. Space Phys., 2001, 106(A12):29207-29217. DOI: 10.1029/2001JA000177
    BRUECKNER G E, DELABOUDINIERE J P, HOWARD R A, et al. Geomagnetic storms caused by Coronal Mass Ejections (CMEs):March 1996 through June 1997[J]. Geophys. Res. Lett., 1998, 25(15):3019-3022. DOI: 10.1029/98GL00704
    WANG Y M, YE P Z, WANG S, et al. A statistical study on the geoeffectiveness of Earth-directed coronal mass ejections from March 1997 to December 2000[J]. J. Geophys. Res. Space Phys., 2002, 107(A11):SSH 2-1-SSH 2-9. DOI: 10.1029/2002JA009244
    SRIVASTAVA N, VENKATAKRISHNAN P. Solar and interplanetary sources of major geomagnetic storms during 1996-2002[J]. J. Geophys. Res.:Space Phys., 2004, 109:A10. DOI: 10.1029/2003JA010175
    QAHWAJI R, COLAK T, AL-OMARI M, et al. Automated prediction of CMEs using machine learning of CME-Flare associations[J]. Solar Phys., 2008, 248(2):471-483
    QU M, SHIH F Y, JING J, et al. Automatic detection and classification of coronal mass ejections[J]. Solar Phys., 2006, 237(2):419-431
    LI Rong, CUI Yanmei. SPE short-term prediction model with machine learning method[J]. Sci. Sin. Phys. Mech. Astron., 2010, 40(7):938-944(李蓉, 崔延美. 应用机器学习方法的太阳质子事件短期预报模型. 中国科学:物理学力学天文学, 2010, 40(7):938-944)
    CHOI S H, MOON Y J, VIEN N A, et al. Application of support vector machine to the prediction of geo-effective halo CMEs[J]. J. Kor. Astron. Soc., 2012, 45(2):31-38
    VAPNIK V N. Statistical Learning Theory[M]. New York:John Wiley, 1998
    VAPNIK V N. The Nature of Statistical Learning Theory[M]. New York:Springer-Verlag, 1995
    ZHAO Xinhua, FENG Xueshang. Prediction method of geomagnetic disturbance intensity and transit time caused by coronal mass ejection[J]. Sci. China:E, 2006, 36(3):285-303(赵新华, 冯学尚. 日冕物质抛射的地磁扰动强度及渡越时间的预测方法[J]. 中国科学:E辑, 2006, 36(3):285-303)
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(3098) PDF Downloads(14599) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint