Volume 39 Issue 3
May  2019
Turn off MathJax
Article Contents
SHI Yishuai, HAO Jinming, JIAO Wenhai, DONG Ming, JIAO Bo, LIU Weiping. Demonstration and Analysis of LEO Real-time Kinematic Precise Orbit Determination with Priori Orbit Constraint ormalsize[J]. Chinese Journal of Space Science, 2019, 39(3): 354-364. doi: 10.11728/cjss2019.03.354
Citation: SHI Yishuai, HAO Jinming, JIAO Wenhai, DONG Ming, JIAO Bo, LIU Weiping. Demonstration and Analysis of LEO Real-time Kinematic Precise Orbit Determination with Priori Orbit Constraint ormalsize[J]. Chinese Journal of Space Science, 2019, 39(3): 354-364. doi: 10.11728/cjss2019.03.354

Demonstration and Analysis of LEO Real-time Kinematic Precise Orbit Determination with Priori Orbit Constraint ormalsize

doi: 10.11728/cjss2019.03.354
  • Received Date: 2018-07-17
  • Rev Recd Date: 2019-02-14
  • Publish Date: 2019-05-15
  • Real-Time Precise Orbit Determination (RTPOD) of Low-Earth-Orbit (LEO) satellites can greatly expand their ability to perform complex scientific missions, such as real-time environment monitoring, maneuver control and satellite autonomous navigation. In this paper, the model of real-time kinematic precise orbit determination is introduced. We present a conception that the LEO Priori Orbit Constraint (POC) is used in the process of RTPOD for the sake of improving the accuracy, convergence speed and stability. The broadcast ephemeris, predicted part of ultra-rapid ephemeris and real-time precise ephemeris are adopted respectively to propose 6 different RTPOD solutions, which are then demonstrated and analyzed using the observations from Swarm A/B/C satellites during 7 days. The results show that the accuracy is improved in turn by using broadcast ephemeris, IGU and IGC ephemeris. Moreover, adding POC can further enhance the result while using the same ephemeris. The IGC+POC solution using the priori orbit with a 1m standard deviation reaches an accuracy of 6.12cm, 5.55cm and 4.98cm in the radial, along and cross component, respectively, which is comparable to the post-processing kinematic POD. Analyses based on different priori orbits indicate that the ideal priori orbit should appear less noise and long-term systematic biases, and short-term systematic biases show little influence on constraint results. Furthermore, adding POC can remarkably speed up the convergence. The convergence of IGC solution needs about 31min on average, whereas the average convergence time after adding POC with a 1m standard deviation is about only 4min, which is beneficial to the fast re-convergence after the occurrences of cycle slip, loss of lock and communication link interruption, and is of great significance in practical application scenarios.

     

  • loading
  • [1]
    MONTENBRUCK O, GILL E. Satellite Orbits:Models, Methods, and Applications[M]. Berlin:Springer, 2000
    [2]
    LI M, LI W, SHI C, et al. Precise orbit determination of the Fengyun-3C satellite using onboard GPS and BDS observations[J]. J. Geodesy, 2017, 91(4):1-15
    [3]
    KUANG Cuilin. Research on Precise Orbit Determination Theory and Methods of Lower Earth Orbit Satellites Using Zero-difference GPS Data[D]. Wuhan:Wuhan University, 2008(匡翠林. 利用GPS非差数据精密确定低轨卫星轨道的理论及方法研究[D]. 武汉:武汉大学, 2008)
    [4]
    LIU Weiping, HAO Jinming, WANG Zhiming. Comparison and analysis of some methods of LEO space-borne GNSS precise orbit determination[J]. J. Geomat. Sci. Technol., 2014, 2:140-144(刘伟平, 郝金明, 王智明. 几种LEO星载GNSS精密定轨方法的对比分析[J]. 测绘科学技术学报, 2014, 2:140-144)
    [5]
    QIN Xianping. Research on Precision Orbit Determination Theory and Method of Low Earth Orbiter Based on GPS Technique[D]. Zhengzhou:Information Engineering University, 2009(秦显平. 星载GPS低轨卫星定轨理论及方法研究[D]. 郑州:解放军信息工程大学, 2009)
    [6]
    GILL E, MONTENBRUCK O, ARICHANDRAN K, et al. High-precision onboard orbit determination for small satellites-the GPS-based XNS on X-SAT[C]//Symposium on Small Satellites Systems and Services. La Rochelle:ESA, 2004:47
    [7]
    REICHERT A, MEEHAN T, MUNSON T. Toward decimeter-level real-time orbit determination:a demonstration using the SAC-C and CHAMP spacecraft[J]. Proc. Int. Technol. Meet. Satell. Div. Inst. Navig., 2002:1996-2003
    [8]
    WANG Fuhong, GONG Xuewen, LIU Wankei. A novel decimeter-level real-time orbit determination algorithm using space-borne GPS measurements with separation and absorption of broadcast ephemeris error[J]. Geomat. Inf. Sci. Wuhan Univ., 2015, 40(9):1230-1236(王甫红, 龚学文, 刘万科. 顾及广播星历误差分离吸收的分米级星载GPS实时定轨新方法[J]. 武汉大学学报(信息科学版), 2015, 40(9):1230-1236)
    [9]
    CHEN P, ZHANG J, SUN X. Real-time kinematic positioning of LEO satellites using a single-frequency GPS receiver[J]. GPS Sol., 2016, 21(3):1-12
    [10]
    WERMUTH M, HAUSCHILD A, MONTENBRUCK O, et al. TerraSAR-X precise orbit determination with real-time GPS ephemerides[J]. Adv. Space Res., 2012, 50(5):549-559
    [11]
    MONTENBRUCK O, HAUSCHILD A, ANDRES Y, et al. (Near-)real-time orbit determination for GNSS radio occultation processing[J]. GPS Sol., 2013, 17(2):199-209
    [12]
    ZHANG Xiaohong, LI Pan, ZUO Xiang. Kinematic precise orbit determination based on ambiguity-fixed PPP[J]. Geomat. Inf. Sci.Wuhan Univ., 2013, 38(9):1009-1013(张小红, 李盼, 左翔. 固定模糊度的精密单点定位几何定轨方法及结果分析[J]. 武汉大学学报(信息科学版), 2013, 38(9):1009-1013)
    [13]
    TIAN Yingguo. Research on the Key Technologies of Swarm Satellites Precise Orbit Determination[D]. Zhengzhou:Information Engineering University, 2017
    [14]
    EL-MOWAFY A, DEO M, KUBO N. Maintaining real-time precise point positioning during outages of orbit and clock corrections[J]. GPS Sol., 2017, 21(3):937-947
    [15]
    GEBHARD H, WEBER G. NTRIP:Networked transport of RTCM via Internet protocol-Internet radio technology for real-time GNSS purposes[C]//AGU Fall Meeting. San Francisco:AGU, 2003
    [16]
    YANG Yang. PPP Based Sequential Orbit Determination for Satellites in Low Earth Orbit[D]. Xi'an:Northwestern Polytechnical University, 2015
    [17]
    WANG Yafei, ZHONG Shiming, WANG Haitao, et al. Precision analysis of LEO satellite orbit prediction[J]. Acta Geod. Cartog. Sin., 2016, 45(9):1035-1041
    [18]
    IJSSEL J V D, ENCARNAÇÃO J, DOORNBOS E, et al. Precise science orbits for the Swarm satellite constellation[J]. Adv. Space Res., 2015, 56(6):1042-1055
    [19]
    HADAS T, BOSY J. IGS RTS precise orbits and clocks verification and quality degradation over time[J]. GPS Sol., 2015, 19(1):93-105
    [20]
    SHAO Kai, GU Defeng, TU Xianqin, et al. Applications of IGS real-time products in precise point positioning and LEO satellites precise orbit determination[C]//China Satellite Navigation Conference. Changsha:CSNO, 2016
    [21]
    LI P, ZHANG X. Integrating GPS and GLONASS to accelerate convergence and initialization times of precise point positioning[J]. GPS Sol., 2014, 18(3):461-471
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(2891) PDF Downloads(10767) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return