Volume 39 Issue 3
May  2019
Turn off MathJax
Article Contents
HUANG Xiaoqin, CHEN Li. Finite Time Control of Space Robot with Elastic Base and Flexible Arms[J]. Journal of Space Science, 2019, 39(3): 399-406. doi: 10.11728/cjss2019.03.399
Citation: HUANG Xiaoqin, CHEN Li. Finite Time Control of Space Robot with Elastic Base and Flexible Arms[J]. Journal of Space Science, 2019, 39(3): 399-406. doi: 10.11728/cjss2019.03.399

Finite Time Control of Space Robot with Elastic Base and Flexible Arms

doi: 10.11728/cjss2019.03.399
  • Received Date: 2018-06-25
  • Rev Recd Date: 2018-08-31
  • Publish Date: 2019-05-15
  • Based on the finite time control, the trajectory tracking and flexible vibration suppression of a free-floating space robot system with two flexible arms and elastic base are discussed. Because of the multiple dynamic coupling relationship between the elastic base and the two flexible arms, the system is a highly nonlinear system. Firstly, the connection between the elastic base and the first arm is regarded as a linear spring, and the dynamic model of the system is derived from the Lagrange equation of the second kind and the assumed mode method. Secondly, by applying the two time-scale assumptions of singular perturbation theory, the system is decomposed into a slow subsystem which represents the rigid motion and a fast subsystem which represents the elastic base and two arms vibration. For the slow subsystem, a finite-time controller based on the nominal model is designed to realize the rigid desired trajectory tracking. Due to the finite time convergence property of the integral sliding mode surface, it has faster convergence speed and stronger robustness than the traditional asymptotic convergence control method. For the fast subsystem, the linear quadratic optimal control method is adopted to suppress the vibration of the elastic base and the two flexible arms simultaneously. Lyapunov theory is used to prove that the proposed control algorithm can enable the tracking error converging to the origin within a finite time. Finally, the simulations verify the effectiveness of the control method.

     

  • loading
  • [1]
    NANOS K, PAPADOPOULOS E. On the use of free-floating space robots in the presence of angular momentum[J]. Intel. Serv. Robot., 2011, 4(1):3-15
    [2]
    ABAD A F, MA O, PHAM K, et al. A review of space robotics technologies for on-orbit servicing[J]. Prog. Aerosp. Sci., 2014, 3(02):1-26
    [3]
    JARZBOWSKA E, PIETRAK K. Constrained mechanical systems modeling and control:a free-floating space manipulator case as a multi-constrained systems[J]. Robot. Auton. Syst., 2014, 62(10):1353-1360
    [4]
    DONG Qiuhuang, CHEN Li. Impact dynamics of flexible space manipulator capturing a satellite, stabilization control and flexible vibration linear quadratic optimal suppression[J]. Chin. J. Space Sci., 2014, 34(3):367-376(董楸煌, 陈力. 柔性空间机械臂捕获卫星过程的碰撞动力学、镇定控制和柔性振动线性二次最优抑制[J]. 空间科学学报, 2014, 34(3):367-376)
    [5]
    SABATINI M, GASBARRI P, MONTI R, et al. Vibration control of a flexible space manipulator during on orbit operations[J]. Acta Astronaut., 2012, 73:109-121
    [6]
    YU Xiaoyan, CHEN Li. Singular perturbation adaptive control and vibration suppression of free-flying flexible space manipulators[J]. Proceed. Inst. Mech. Eng. Part C:J. Mech. Eng. Sci., 2015, 229(11):1989-1997
    [7]
    JOONO C, WAN K C, YOUNGIL Y. Fast Suppression of Vibration for Multi-link Flexible Robots Using Parameter Adaptive Control[C]//Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Maui, Hawail, USA:IEEE, 2001:913-918
    [8]
    EVANS L. Canadian space robotics on board the international space[C]//2005 CCToMM Symposium on Mechanism, Machines, and Mechatronics. Montreal:Canadian Space Agency, 2005:26-27
    [9]
    LIANG Jie, CHEN Li. Robust adaptive sliding mode control and dual vibration suppression in flexible joint manipulator of space station with elastic foundation[J]. Manned Spaceflight, 2016, 22(6):788-796(梁捷, 陈力. 基座弹性影响下空间站柔性关节机械臂的鲁棒自适应滑模控制及双重弹性振动主动抑制[J]. 载人航天, 2016, 22(6):788-796)
    [10]
    GAO Fangzheng, WU Yuqiang, ZHANG Zhongcai. Finite-time stabilization of uncertain nonholonomic systems in feedforward-like form by output feedback[J]. ISA Trans., 2015, 59:125-132
    [11]
    WANG X, SUN X, LI S, et al. Finite-time position tracking control of rigid hydraulic manipulators based on high-order terminal sliding mode[J]. J. Syst. Control Eng., 2011, 226(3):394-415
    [12]
    SONG Zhaikui, LI Hongxing, SUN Kaibiao. Finite-time control for nonlinear spacecraft attitude control based on terminal sliding mode control technique[J]. ISA Trans., 2014, 53(1):117-124
    [13]
    NI Zhenhua. Vibration Mechanics[M]. Xi'an:Xi'an Jiao Tong University Press, 1988(倪振华. 振动力学[M]. 西安:西安交通大学出版社, 1988)
    [14]
    YU Shuanghe, YU Xinghuo, SHIRINZADEH Bijan, et al. Continuous finite-time control for robotic manipulators with terminal sliding mode[J]. Automatica, 2005, 41(11):1957-1964
    [15]
    LU Kunfeng, XIA Yuanqing. Adaptive attitude tracking control for rigid spacecraft with finite-time convergence[J]. Automatica, 2013, 49(12):3591-3599
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(2766) PDF Downloads(15986) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return