Volume 40 Issue 1
Jan.  2020
Turn off MathJax
Article Contents
YAN Ruirui, HUANG Daihui, ZHAO Bing, AXI Kegu, ZHOU Xunxiu. Effects of Thunderstorms Electric Field on Energy of Cosmic Rays at LHAASO[J]. Chinese Journal of Space Science, 2020, 40(1): 65-71. doi: 10.11728/cjss2020.01.065
Citation: YAN Ruirui, HUANG Daihui, ZHAO Bing, AXI Kegu, ZHOU Xunxiu. Effects of Thunderstorms Electric Field on Energy of Cosmic Rays at LHAASO[J]. Chinese Journal of Space Science, 2020, 40(1): 65-71. doi: 10.11728/cjss2020.01.065

Effects of Thunderstorms Electric Field on Energy of Cosmic Rays at LHAASO

doi: 10.11728/cjss2020.01.065
  • Received Date: 2019-03-10
  • Rev Recd Date: 2019-09-10
  • Publish Date: 2020-01-15
  • The Large High Altitude Air Shower Observatory (LHAASO) is located in Daocheng, Sichuan. Featured with frequent thunderstorms in summer, it is beneficial to study the influence of atmospheric electric field on cosmic rays during thunderstorms. In this paper, Monte Carlo simulations are performed to study the effects of thunderstorms electric field on positrons and electrons at LHAASO. The energy distribution of electrons changes in the field. In low energy region, the total number of electrons and positrons increases significantly, while at high energies, it does not change obviously. In an electric field of 1700V·cm-1, above the threshold field of the Relativistic Runaway Electron Avalanche (RREA) process, the electrons with energy less than 120MeV can be accelerated. While the energy is below 60MeV, the number of electrons increases exponentially, with the increase amplitude up to about 2252%. It is consistent with the theory of RREA. In an field of 1000V·cm-1 (below the threshold of the RREA process), electrons with energy less than 70MeV can be accelerated, and its quantity significantly increases, but the amplification (about 86%) is far lower than that of the critical field of the RREA process. The results may provide important information to study the variations of cosmic ray intensity at LHAASO detection surface during thunderstorms.

     

  • loading
  • [1]
    MARSHALL T C, RUST W D, STOLZENBURG M. Electrical structure and updraft speeds in thunderstorms over the southern Great Plains[J]. J. Geophys. Res., 1995, 100(D1):1001-1015
    [2]
    STOLZENBURG M, MARSHALL T C, RUST W D, et al. Electric field values observed near lightning flash initiations[J]. Geophys. Res. Lett., 2007, 34(4).DOI: 10.1029/2006gl028777
    [3]
    MARSHALL T C, STOLZENBURG M, MAGGIO C R, et al. Observed electric fields associated with lightning initiation[J]. Geophys. Res. Lett., 2005, 32(3).DOI: 10.1029/2004gl021802
    [4]
    ZHOU Xunxiu, WANG Xinjian, HUANG Daihui, et al. Simulation study on the correlation between the ground cosmic rays and the near earth thunderstorms electric field at Yangbajing[J]. Acta Phys. Sin., 2015, 64(14):149202
    [5]
    BARTOLIL B, BERNARDINI P, BI X J, et al. Observation of the thunderstorm-related ground cosmic ray flux variations by ARGO-YBJ[J]. Phys. Rev.:D, 2018, 97(4).DOI: 10.1103/PhysRevD.97.042001
    [6]
    WILSON C T R. The electric field of the thundercloud and some of its effects[J]. Proc. Phys. Soc., 1924, 37(1):32-37
    [7]
    GUREVICH A V, MILIKH G M, ROUSSEL-DUPRE R. Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm[J]. Phys. Lett.:A, 1992, 165(5/6):463-468
    [8]
    FISHMAN G J, BHAT P N, MALLOZZI R, et al. Discovery of intense gamma-ray flashes of atmospheric origin[J]. Science, 1994, 264(5163):1313-1316
    [9]
    SMITH D M, LOPEZ L I, LIN R P, et al. Terrestrial gamma-ray flashes observed up to 20MeV[J]. Science, 2005, 307(5712):1085-1088
    [10]
    ALEXEENKO V V, CHERNYAEV A B, CHUDAKOV A E, et al. Short perturbations of cosmic ray intensity and electric field in atmosphere[C]//Proceeding of 19th International Cosmic Ray Conference. La Jolla:International Union of Pure and Applied Physics, 1985:352-355
    [11]
    AGLIETTA M, ALESSANDRO B, ANTONIOLI P, et al. The cosmic ray primary composition in the "knee" region through the EAS electromagnetic and muon measurements at EAS-TOP[J]. Astropart. Phys., 2004, 21(6):583-596
    [12]
    ZHOU Xunxiu, HU Hongbo, HUANG Qing. Search for TeV GRBs using Tibet ASγ data[J]. Acta Phys. Sin., 2009, 58(8):5879-5885
    [13]
    CHILINGARIAN A, AVAKYAN K, BABAYAN V, et al. Aragats space-environmental centre:status and SEP forecasting possibilities[J]. J. Phys. G:Nucl. Phys., 2003, 29(29):939-952
    [14]
    CHILINGARIAN A, ARAKELYAN K, AVAKYAN K. Correlated measurements of secondary cosmic ray fluxes by the Aragats Space-Environmental Center monitors[J]. Nucl. Instrum. Methods Phys. Res. A, 2005, 543(2):483-496
    [15]
    WADA Y, BOWERS G S, ENOTO T, et al. Termination of electron acceleration in thundercloud by intracloud/intercloud discharge[J]. Geophys. Res. Lett., 2018, 45(11):5700-5707
    [16]
    XU Bin, BIE Yeguang, ZOU Dan. Study of the Instantaneous change of secondary cosmic ray during thunderstorm[J]. Chin. J. Space Sci., 2012, 32(4):501-505(徐斌, 别业广, 邹丹. 雷暴期间次级宇宙线粒子强度瞬时变化研究[J]. 空间科学学报, 2012, 32(4):501-505)
    [17]
    CHILINGARIAN A, DARYAN A, ARAKELYAN K, et al. Ground-based observations of thunderstorm-correlated fluxes of high-energy electrons, gamma rays, and neutrons[J]. Phys. Rev.:D, 2010, 82(4):2281-2288
    [18]
    CHILINGARIAN A, MAILYAN B, VANYAN L. Recovering of the energy spectra of electrons and gamma rays coming from the thundercloudsp[J]. Atmos. Res., 2012, 114-115(4):1-16
    [19]
    CHILINGARIAN A, VANYAN L, MAILYAN B. Observation of thunderstorm ground enhancements with intense fluxes of high-energy electrons[J]. Astropart. Phys., 2013, 48(7):1-7
    [20]
    VANYAN L, CHILINGARIAN A. Simulations of the Relativistic Runaway Electron Avalanches (RREA) in the thunder clouds above the Aragats space Environmental center (ASEC)[C]//Proceedings of the 32nd International Cosmic Ray Conference. Beijing:International Cosmic Ray Conference, 2011:338-341
    [21]
    CRAMER E S, DWYER J R, ARABSHAHI S, et al. An analytical approach for calculating energy spectra of relativistic runaway electron avalanches in air[J]. J. Geophys. Res.:Space Phys., 2014, 119(9):7794-7823
    [22]
    LINDY N C, BENTON E R, BEASLEY W H, et al. Energetic cosmic-ray secondary electron distribution at thunderstorm altitudes[J]. J. Atmos. Sol.:Terr. Phys., 2018, 179(10):435-440
    [23]
    CAPDEVIELLE J N, KNAPP J, REBEL H, et al. Extensive air shower simulations with the CORSIKA program[J]. Ame. Inst. Phys., 1993, 276(1):545-553
    [24]
    ZHOU Xunxiu, WANG Xinjian, HUANG Daihui, et al. Effects of thunderstorms electric field on intensity of cosmic ray electrons[J]. Chin. J. Space Sci., 2016, 36(1):49-55(周勋秀, 王新建, 黄代绘, 等. 雷暴电场对宇宙线次级粒子中电子的影响[J]. 空间科学学报, 2016, 36(1):49-55)
    [25]
    DWYER J R. A fundamental limit on electric fields in air[J]. Geophys. Res. Lett., 2003, 30(20):2055
    [26]
    SYMBALISTY E M D, ROUSSEL-DUPRÉ R A, YUKHIMUK V A. Finite volume solution of the relativistic Boltzmann equation for electron avalanche studies[J]. IEEE Trans. Plasma Sci., 1998, 26(5):1575-1582
    [27]
    ZHANG Yuesheng, XIANG Linchuan. Study on collision process between electron and photon in compton effect[J]. Phys. Eng., 2013, 23(3):18-20
    [28]
    ZHOU X X, WANG X J, HUANG D H, et al. Effect of near-earth thunderstorms electric field on the intensity of ground cosmic ray positrons/electrons in Tibet[J]. Astropart. Phys., 2016, 84(8):107-114
    [29]
    BETHE H A. Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie[J]. Ann. Phys., 2010, 397(3):325-400
    [30]
    BUITINK S, HUEGE T, FALCKE H, et al. Monte Carlo simulations of air showers in atmospheric electric fields[J]. Astropart. Phys., 2010, 33(1):1-12
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(547) PDF Downloads(78) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return