Volume 40 Issue 1
Jan.  2020
Turn off MathJax
Article Contents
YAN Ruirui, HUANG Daihui, ZHAO Bing, AXI Kegu, ZHOU Xunxiu. Effects of Thunderstorms Electric Field on Energy of Cosmic Rays at LHAASO[J]. Journal of Space Science, 2020, 40(1): 65-71. doi: 10.11728/cjss2020.01.065
Citation: YAN Ruirui, HUANG Daihui, ZHAO Bing, AXI Kegu, ZHOU Xunxiu. Effects of Thunderstorms Electric Field on Energy of Cosmic Rays at LHAASO[J]. Journal of Space Science, 2020, 40(1): 65-71. doi: 10.11728/cjss2020.01.065

Effects of Thunderstorms Electric Field on Energy of Cosmic Rays at LHAASO

doi: 10.11728/cjss2020.01.065
  • Received Date: 2019-03-10
  • Rev Recd Date: 2019-09-10
  • Publish Date: 2020-01-15
  • The Large High Altitude Air Shower Observatory (LHAASO) is located in Daocheng, Sichuan. Featured with frequent thunderstorms in summer, it is beneficial to study the influence of atmospheric electric field on cosmic rays during thunderstorms. In this paper, Monte Carlo simulations are performed to study the effects of thunderstorms electric field on positrons and electrons at LHAASO. The energy distribution of electrons changes in the field. In low energy region, the total number of electrons and positrons increases significantly, while at high energies, it does not change obviously. In an electric field of 1700V·cm-1, above the threshold field of the Relativistic Runaway Electron Avalanche (RREA) process, the electrons with energy less than 120MeV can be accelerated. While the energy is below 60MeV, the number of electrons increases exponentially, with the increase amplitude up to about 2252%. It is consistent with the theory of RREA. In an field of 1000V·cm-1 (below the threshold of the RREA process), electrons with energy less than 70MeV can be accelerated, and its quantity significantly increases, but the amplification (about 86%) is far lower than that of the critical field of the RREA process. The results may provide important information to study the variations of cosmic ray intensity at LHAASO detection surface during thunderstorms.


  • loading
  • [1]
    MARSHALL T C, RUST W D, STOLZENBURG M. Electrical structure and updraft speeds in thunderstorms over the southern Great Plains[J]. J. Geophys. Res., 1995, 100(D1):1001-1015
    STOLZENBURG M, MARSHALL T C, RUST W D, et al. Electric field values observed near lightning flash initiations[J]. Geophys. Res. Lett., 2007, 34(4).DOI: 10.1029/2006gl028777
    MARSHALL T C, STOLZENBURG M, MAGGIO C R, et al. Observed electric fields associated with lightning initiation[J]. Geophys. Res. Lett., 2005, 32(3).DOI: 10.1029/2004gl021802
    ZHOU Xunxiu, WANG Xinjian, HUANG Daihui, et al. Simulation study on the correlation between the ground cosmic rays and the near earth thunderstorms electric field at Yangbajing[J]. Acta Phys. Sin., 2015, 64(14):149202
    BARTOLIL B, BERNARDINI P, BI X J, et al. Observation of the thunderstorm-related ground cosmic ray flux variations by ARGO-YBJ[J]. Phys. Rev.:D, 2018, 97(4).DOI: 10.1103/PhysRevD.97.042001
    WILSON C T R. The electric field of the thundercloud and some of its effects[J]. Proc. Phys. Soc., 1924, 37(1):32-37
    GUREVICH A V, MILIKH G M, ROUSSEL-DUPRE R. Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm[J]. Phys. Lett.:A, 1992, 165(5/6):463-468
    FISHMAN G J, BHAT P N, MALLOZZI R, et al. Discovery of intense gamma-ray flashes of atmospheric origin[J]. Science, 1994, 264(5163):1313-1316
    SMITH D M, LOPEZ L I, LIN R P, et al. Terrestrial gamma-ray flashes observed up to 20MeV[J]. Science, 2005, 307(5712):1085-1088
    ALEXEENKO V V, CHERNYAEV A B, CHUDAKOV A E, et al. Short perturbations of cosmic ray intensity and electric field in atmosphere[C]//Proceeding of 19th International Cosmic Ray Conference. La Jolla:International Union of Pure and Applied Physics, 1985:352-355
    AGLIETTA M, ALESSANDRO B, ANTONIOLI P, et al. The cosmic ray primary composition in the "knee" region through the EAS electromagnetic and muon measurements at EAS-TOP[J]. Astropart. Phys., 2004, 21(6):583-596
    ZHOU Xunxiu, HU Hongbo, HUANG Qing. Search for TeV GRBs using Tibet ASγ data[J]. Acta Phys. Sin., 2009, 58(8):5879-5885
    CHILINGARIAN A, AVAKYAN K, BABAYAN V, et al. Aragats space-environmental centre:status and SEP forecasting possibilities[J]. J. Phys. G:Nucl. Phys., 2003, 29(29):939-952
    CHILINGARIAN A, ARAKELYAN K, AVAKYAN K. Correlated measurements of secondary cosmic ray fluxes by the Aragats Space-Environmental Center monitors[J]. Nucl. Instrum. Methods Phys. Res. A, 2005, 543(2):483-496
    WADA Y, BOWERS G S, ENOTO T, et al. Termination of electron acceleration in thundercloud by intracloud/intercloud discharge[J]. Geophys. Res. Lett., 2018, 45(11):5700-5707
    XU Bin, BIE Yeguang, ZOU Dan. Study of the Instantaneous change of secondary cosmic ray during thunderstorm[J]. Chin. J. Space Sci., 2012, 32(4):501-505(徐斌, 别业广, 邹丹. 雷暴期间次级宇宙线粒子强度瞬时变化研究[J]. 空间科学学报, 2012, 32(4):501-505)
    CHILINGARIAN A, DARYAN A, ARAKELYAN K, et al. Ground-based observations of thunderstorm-correlated fluxes of high-energy electrons, gamma rays, and neutrons[J]. Phys. Rev.:D, 2010, 82(4):2281-2288
    CHILINGARIAN A, MAILYAN B, VANYAN L. Recovering of the energy spectra of electrons and gamma rays coming from the thundercloudsp[J]. Atmos. Res., 2012, 114-115(4):1-16
    CHILINGARIAN A, VANYAN L, MAILYAN B. Observation of thunderstorm ground enhancements with intense fluxes of high-energy electrons[J]. Astropart. Phys., 2013, 48(7):1-7
    VANYAN L, CHILINGARIAN A. Simulations of the Relativistic Runaway Electron Avalanches (RREA) in the thunder clouds above the Aragats space Environmental center (ASEC)[C]//Proceedings of the 32nd International Cosmic Ray Conference. Beijing:International Cosmic Ray Conference, 2011:338-341
    CRAMER E S, DWYER J R, ARABSHAHI S, et al. An analytical approach for calculating energy spectra of relativistic runaway electron avalanches in air[J]. J. Geophys. Res.:Space Phys., 2014, 119(9):7794-7823
    LINDY N C, BENTON E R, BEASLEY W H, et al. Energetic cosmic-ray secondary electron distribution at thunderstorm altitudes[J]. J. Atmos. Sol.:Terr. Phys., 2018, 179(10):435-440
    CAPDEVIELLE J N, KNAPP J, REBEL H, et al. Extensive air shower simulations with the CORSIKA program[J]. Ame. Inst. Phys., 1993, 276(1):545-553
    ZHOU Xunxiu, WANG Xinjian, HUANG Daihui, et al. Effects of thunderstorms electric field on intensity of cosmic ray electrons[J]. Chin. J. Space Sci., 2016, 36(1):49-55(周勋秀, 王新建, 黄代绘, 等. 雷暴电场对宇宙线次级粒子中电子的影响[J]. 空间科学学报, 2016, 36(1):49-55)
    DWYER J R. A fundamental limit on electric fields in air[J]. Geophys. Res. Lett., 2003, 30(20):2055
    SYMBALISTY E M D, ROUSSEL-DUPRÉ R A, YUKHIMUK V A. Finite volume solution of the relativistic Boltzmann equation for electron avalanche studies[J]. IEEE Trans. Plasma Sci., 1998, 26(5):1575-1582
    ZHANG Yuesheng, XIANG Linchuan. Study on collision process between electron and photon in compton effect[J]. Phys. Eng., 2013, 23(3):18-20
    ZHOU X X, WANG X J, HUANG D H, et al. Effect of near-earth thunderstorms electric field on the intensity of ground cosmic ray positrons/electrons in Tibet[J]. Astropart. Phys., 2016, 84(8):107-114
    BETHE H A. Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie[J]. Ann. Phys., 2010, 397(3):325-400
    BUITINK S, HUEGE T, FALCKE H, et al. Monte Carlo simulations of air showers in atmospheric electric fields[J]. Astropart. Phys., 2010, 33(1):1-12
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(309) PDF Downloads(71) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint