Citation: | LI Yukui, LI Hu, HU Tai. In-orbit Operational Pattern Monitoring Algorithms Based on LightGBM for Hard X-ray Modulation Telescope Satellite[J]. Journal of Space Science, 2020, 40(1): 109-116. doi: 10.11728/cjss2020.01.109 |
[1] |
CHEN Wei, HU Guangrui, WANG Yaping. Knowledge acquisition in an expert system for fault diagnosis of certain spacecraft[J]. J. Shanghai Jiaotong Univ., 2000, 34(6):845-847(陈玮, 胡光锐, 汪亚平.飞行器故障诊断专家系统中的知识获取机制[J]. 上海交通大学学报, 2000, 34(6):845-847)
|
[2] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G. Imagenet classification with deep convolutional neural networks[C]//Neural Information Processing Systems. Lake Tahoe:NIPS, 2012:1106-1114
|
[3] |
XIE Lun, LIU Fan, GONG Xiao, et al. Spacecraft fault diagnosis system based on the hybrid intelligence[J]. Inf. Control, 2010, 39(1):106-113(解仑, 刘帆, 巩潇, 等. 基于混合智能的航天器故障诊断系统[J]. 信息与控制, 2010, 39(1):106-113)
|
[4] |
BALDI P, BLANKE M, CASTALDI P, et al. Combined geometric and neural network approach to generic fault diagnosis in satellite reaction wheels[J]. IFAC, 2015, 48(21):194-199
|
[5] |
KE G, MENG Q, FINLEY T, et al. LightGBM:a highly efficient gradient boosting decision tree[C]//Neural Information Processing Systems. Long Beach:NIPS, 2017:3146-3154
|
[6] |
FRIEDMAN J H. Stochastic gradient boosting[J]. Comput. Stat. Data An., 2002, 38(4):367-378
|
[7] |
CHEN T, GUESTRIN C. XGBoost:a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco:ACM, 2016:785-794
|