Volume 40 Issue 1
Jan.  2020
Turn off MathJax
Article Contents
LIU Yang, WANG Hongjian, ZHANG Lifang. Influence of Deformation of Spaceborne Reflectarray Antenna on Its Radiation Characteristics[J]. Journal of Space Science, 2020, 40(1): 117-125. doi: 10.11728/cjss2020.01.117
Citation: LIU Yang, WANG Hongjian, ZHANG Lifang. Influence of Deformation of Spaceborne Reflectarray Antenna on Its Radiation Characteristics[J]. Journal of Space Science, 2020, 40(1): 117-125. doi: 10.11728/cjss2020.01.117

Influence of Deformation of Spaceborne Reflectarray Antenna on Its Radiation Characteristics

doi: 10.11728/cjss2020.01.117
  • Received Date: 2019-01-08
  • Rev Recd Date: 2019-07-25
  • Publish Date: 2020-01-15
  • Reflectarray, combined the features of reflector and array antenna, has been developed rapidly in last several decades and has been used in many applications. High-gain, low-profile and low-weight planar reflectarray antenna can be widely used in space area. Though several novel reflectarray antennas such as metal-only reflectarray, inflatable reflectarray and transparent reflectarray are designed for space use, the massive applications of reflectarray in space area are not realistic due to the reliability requirements. The fabrication error, assembling error and the heat deformation in high and low temperature will affect the electrical performance of the antenna dramatically. To analyze the changing of the radiation properties resulted from deformation in real environment, the theoretical analysis of the reflection phase for element vertical and horizontal displacement and deformation are carried out. Then two reflectarray antennas with different aperture sizes are designed to find the overall influence of deformation. Scientific calculation with MATLAB and electromagnetic simulation with HFSS are adopted to verify the analysis. The radiation patterns and gain performances of the two reflectarray antennas under several different conditions such as rotation, inverted V-shape deformation and irregular deformation are compared and summarized. The precautions against deformation are also given.

     

  • loading
  • [1]
    HUANG J, ENCINAR J A. Reflectarray Antennas[M]. Hoboken:John Wiley and Sons, 2007
    [2]
    VAZE P, KAKI S, LIMONADI D, et al. The surface water and ocean topography mission[C]//2018 IEEE Aerospace Conference. Big Sky:IEEE, 2018:1-9
    [3]
    DURAND M, FU L, LETTENMAIER D P, et al. The Surface water and ocean topography mission:observing terrestrial surface water and oceanic submesoscale eddies[J]. Proc. IEEE, 2010, 98(5):766-779
    [4]
    HODGES R E, RADWAY M J, TOORIAN A, et al. ISARA-Integrated Solar Array and Reflectarray CubeSat deployable Ka-band antenna[C]//IEEE International Symposium on Antennas and Propagation and Usnc/ursi National Radio Science Meeting, 2015. DOI: 10.1109/APS.2015.7305460
    [5]
    PILZ D, MENZEL W. Folded reflectarray antenna[J]. Elect. lett., 1998, 34(9):832-833
    [6]
    HUANG J, FERIA A. Inflatable microstrip reflectarray antennas at X and Ka-band frequencies[C]//IEEE Antennas and Propagation Society International Symposium. Pasadena:National Aeronautics and Space Adiministration, 1999:1670-1673
    [7]
    DENG R, YANG F, XU S, et al. A low-cost metal-only reflectarray using modified slot-type phoenix element with 360° phase coverage[J]. IEEE Trans. Ant. Prop., 2016, 64(4):1556-1560
    [8]
    KOCIA C, HUM S V. Design of an optically transparent reflectarray for solar applications using indium tin oxide[J]. IEEE Trans. Ant. Prop., 2016, 64(7):2884-2893
    [9]
    XUE F, WANG H J, YI M, et al. Design of a broadband single-layer linearly polarized reflectarray using four-arm spiral elements[J]. IEEE Ant. Wirel. Prop. Lett., 2017, 16:696-699
    [10]
    HAN C, ZHANG Y, YANG Q. Single-layer dual-band dual-linear-polarization reflectarray antenna with different beams for each band[J]. Prog. Electr. Res.:C, 2017, 3:65-73
    [11]
    TIENDA C, ENCINAR J A, BARBA M, et al. Dual reflectarray antennas for contoured beam and beam scanning applications[C]//11th European Conference on Antennas and Propagation (Eucap). Pari:IEEE, 2017:76-79. DOI: 10.23919/EuCAP.2017.7928597
    [12]
    LI Qi, ZHOU Xubin, DU Sanhu, et al. Simulation analysis and model validation of thermal distortion for large space-borne solid antenna[J]. Spacecraft Env. Eng., 2017, 34(1):40-48(李奇, 周徐斌, 杜三虎, 等. 大型星载固面天线热变形试验及仿真分析验证[J]. 航天器环境工程, 2017, 34(1):40-48)
    [13]
    LIU Guoqing, RUAN Jianhua, LUO Wenbo, et al. Research on thermal deformation analysis and test verification method for spacecraft high-stability structure[J]. Spacecraft Eng., 2014, 23(2):64-70(刘国青, 阮剑华, 罗文波, 等. 航天器高稳定结构热变形分析与试验验证方法研究[J]. 航天器工程, 2014, 23(2):64-70)
    [14]
    LIU Shihua, WANG Hongjian, HAO Qiyan, et al. Wideband design and thermal deformation analysis of space-borne large waveguide slots array antenna in Ku-band[J]. Chin. J. Space Sci., 2013, 33(2):207-212(刘世华, 王宏建, 郝齐焱, 等. 大型星载Ku波段波导缝隙阵列天线宽频带设计及热变形分析[J]. 空间科学学报, 2013, 33(2):207-212)
    [15]
    SHI Li, DENG Yunkai, SUN Huifeng. Pattern synthesis method for large planar two-dimensional arrays using FFT[J]. Syst. Eng. Elect., 2011, 33(11):2377-2381(石力, 邓云凯, 孙慧峰. 基于FFT的大型平面阵列方向图的综合方法[J]. 系统工程与电子技术, 2011, 33(11):2377-2381)
    [16]
    LIU Y, WANG H, DONG X. Design of a dual-polarized broadband single-layer reflectarray based on square spiral element[J]. Prog. Elect. Res.:M, 2018, 2:23-30
    [17]
    ZHANG Dengcai, ZHANG Yiping, HUANG Fuqing, et al. Application of carbon fiber composite materials in satellite antenna structure[J]. Elect. Mech. Eng., 2018, 34(3):52-55(张登材, 张义萍, 黄福清, 等. 碳纤维复合材料在星载天线结构中的应用[J]. 电子机械工程, 2018, 34(3):52-55)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(390) PDF Downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return