Volume 40 Issue 3
May  2020
Turn off MathJax
Article Contents
ZHANG Zijin, DONG Xiaolong. Sea Level Pressure Retrieval in Mid-to-low Latitude Regions Using FY-3C/MWHTS Data[J]. Journal of Space Science, 2020, 40(3): 364-375. doi: 10.11728/cjss2020.03.364
Citation: ZHANG Zijin, DONG Xiaolong. Sea Level Pressure Retrieval in Mid-to-low Latitude Regions Using FY-3C/MWHTS Data[J]. Journal of Space Science, 2020, 40(3): 364-375. doi: 10.11728/cjss2020.03.364

Sea Level Pressure Retrieval in Mid-to-low Latitude Regions Using FY-3C/MWHTS Data

doi: 10.11728/cjss2020.03.364
  • Received Date: 2019-03-28
  • Rev Recd Date: 2019-10-18
  • Publish Date: 2020-05-15
  • Sea level pressure is an important meteorological factor and plays a key role in Numerical Weather Prediction (NWP), tropical cyclone forecasting and solar activity studies. However, until recently, sea level pressure data have mainly been provided by in-situ measurements. It is of great significance to obtain sea level pressure with a high spatial and temporal resolution by means of remote sensing. In this study, we investigated the retrieval of sea level pressure over mid-to-low latitude (40°S-40°N) regions using the observations from the Microwave Humidity and Temperature Sounder (MWHTS) onboard the Fengyun-3C (FY-3C) satellite. Sea level pressure sounding is achieved by MWHTS 118.75GHz channels due to their ability to measure the total columnar oxygen absorption. The sensitivity of the MWHTS 118.75GHz channels to surface pressure was analyzed using the radiative transfer equation. Compared with the channels far into the oxygen absorption band, the channels lie on the wing of the band are more sensitive to the change of surface pressure. A statistical retrieval algorithm based on the Back-Propagation (BP) neural networks was established. In-situ buoy measurements and reanalysis data were used to assess the retrieval performance. Results showed that the proposed retrieval algorithm can estimate sea level pressure over mid-to-low latitude areas (40°S-40°N) with the accuracy of 2.0, 3.0, and 3.5hPa for clear-sky, cloudy and rainy conditions, respectively. In addition, several tropical cyclone retrieval experiments showed that the proposed method was useful in the early identification of tropical depression.


  • loading
  • [1]
    FLOWER D, PECKHAM G. A Microwave Pressure Sounder[M]. Pasadena CA:Jet Propulsion Laboratory, 1978
    MA Leiming. A new approach to typhoon vortex initialization based on the dynamic retrieval of sea level pressure[J]. Acta Meteor. Sin., 2011, 69(6):978-989(马雷鸣. 基于海平面气压动力反演的台风涡旋初始化方法[J]. 气象学报, 2011, 69(6):978-989)
    TU Xiaoping, XU Yinglong. Verification of TC track forecasting based on ECMWF mean sea level pressure field[J]. Meteor. Mon., 2010, 36:107-111(涂小萍, 许映龙. 基于ECMWF海平面气压场的热带气旋路径预报效果检验[J]. 气象, 2010, 36:107-111)
    MIN Q, GONG W, LIN B, et al. Application of surface pressure measurements from O2-band differential absorption radar system in three-dimensional data assimilation on hurricane:Part I. An observing system simulation experiments study[J]. J. Quant. Spectrosc. Radiat. Transfer., 2015, 150:148-165
    JIANG Qiongfei, GUO Shengli, LIANG Haowen, et al. Research of EASM decadal variation characteristics based on the EMD method and the relationship with solar activity[J]. Chin. J. Space Sci., 2015, 35(1):50-55(姜琼妃, 郭胜利, 梁浩文, 等. 基于EMD的东亚夏季风年代际变化特征及与太阳活动的关系[J]. 空间科学学报, 2015, 35(1):50-55)
    TIAN Rongxiang. Solar effect on the relationship between tropical cyclone activity over the west of North Pacific and the stratospheric quasi-biennial oscillation[J]. J. Zhejiang Univ.:Sci. Edi., 2005, 32(3):350(田荣湘. 太阳活动、准两年振荡对西北太平洋热带气旋的影响[J]. 浙江大学学报:理学版, 2005, 32(3):350)
    LI H, WANG C, HE S, et al. Plausible modulation of solar wind energy flux input on global tropical cyclone activity[J]. J. Atmos. Sol.:Terr. Phys., 2019, 192.DOI:10. 1016/j.jastp.2018.01.018
    SHA Wenyu, CAI Jianping. Changes of Pacific and Indian ocean's SST, sea level pressure and their influence on cold summer in east China[J]. Acta Meteor. Sin., 1994, 52(1):117-120(沙文钰, 蔡剑平. 太平洋和印度洋表层水温、海平面气压变化关系及对东亚冷夏的影响[J]. 气象学报, 1994, 52(1):117-120)
    ZHAO Qiaolian, LI Chongyin. Dipole mode of the sea level pressure anomalies in Asia-Pacific region and the relation to winter climate anomaly in China[J]. Clim. Environ. Res., 2012, 17(1):1-12(赵巧莲, 李崇银. 亚洲-太平洋地区冬季海平面气压异常偶极模与我国冬季气候异常的关系[J]. 气候与环境研究, 2012, 17(1):1-12)
    HILBURN K A, BOURASSA M A, O'BRIEN J J. Development of scatterometer-derived surface pressures for the Southern Ocean[J]. J. Geophys. Res. Oceans., 2003, 108:3244
    HSU C S, WURTELE M G, CUNNINGHAM G F, et al. Construction of marine surface pressure fields from scatterometer winds alone[J]. J. Appl. Meteor., 1997, 36:1249-1261
    PATOUX J, BROWN R A. A gradient wind correction for surface pressure fields retrieved from scatterometer winds[J]. J. Appl. Meteor., 2002, 41:133-143
    PATOUX J, FOSTER R C, BROWN R A. An evaluation of scatterometer-derived oceanic surface pressure fields[J]. J. Appl. Meteorol. Climatol., 2008, 47:835-852
    ZHANG L, HUANG S, DU H. A new method of retrieving typhoon's sea level pressure fields and central positions from scatterometer-derived sea surface winds[J]. Acta. Phys. Sin., 2011, 609(11):119202
    ELACHI C, VAN Zyl. Introduction to the Physics and Techniques of Remote Sensing (2ed.)[M]. Hoboken:John Wiley & Sons, 2006
    MITCHELL R, O'BRIEN D. Error estimates for passive satellite measurement of surface pressure using absorption in the A band of oxygen[J]. J. Atmos. Sci., 1987, 44:1981-1990
    LIN B, HU Y. Numerical simulations of radar surface air pressure measurements at O2 bands[J]. IEEE Geosci. Remote Sens. Lett., 2005, 2(3):324-328
    HEALY S B. Surface pressure information retrieved from GPS radio occultation measurements[J]. Quart. J. Roy. Meteor. Soc., 2013, 139:2108-2118
    HE J Y, ZHANG S W. Research on global profiles and precipitation retrievals for FY-3C MWHTS[C]//2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Milan:IEEE, 2015:4890-4893
    ZHANG S, LI J, WANG Z, et al. Design of the second generation microwave humidity sounder (MWHS-II) for Chinese meteorological satellite FY-3[C]//2012 IEEE International Geoscience and Remote Sensing Symposium. Munich:IEEE, 2012:4672-4675
    GUO Y, LU N M, QI C L, et al. Calibration and validation of microwave humidity and temperature sounder onboard FY-3C satellite[J]. Chin. J. Geophys., 2015, 58:20-31
    HE Q R, WANG Z Z, HE J Y. Bias correction for retrieval of atmospheric parameters from the microwave humidity and temperature sounder onboard the Fengyun-3C satellite[J]. Atmosphere, 2016, 7:156
    DEE D P, UPPALA S M, SIMMONS A J, et al. The ERA-Interim reanalysis:configuration and performance of the data assimilation system[J]. Quart. J. Roy. Meteor. Soc., 2011, 137:553-597
    OFFICE M. Handbook of Meteorological Instruments (2ed.)[M]. London:HMSO, 1980
    ULABY F T, LONG D G. Microwave Radar and Radiometric Remote Sensing[D]. Ann Arbor:The University of Michigan Press, 2014
    LIEBE H, HUFFORD G. Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz[C]//Electromagnetic Wave Propagation Panel Symposium. Palma de Mallorca:Spain, 1993:1-11
    ZHANG Z X. Remote sounding of atmospheric pressure profile from space, part 1:principle[J]. J. Appl. Remote Sens., 2010, 4:2840-2849
    HUANG Jin, ZHANG Zhengqiang, ZHANG Yuzhe, et al. High-precision orbit prediction for high-altitude orbit satellite based on ANN model[J]. Chin. J. Space Sci., 2016, 36(1):83-91(黄金, 张正强, 张宇喆, 等. 基于神经网络模型的地球同步卫星高精度轨道预报[J]. 空间科学学报, 2016, 36(1):83-91)
    TIAN Jianhua. Applications of BP neural networks in forecasting sunspot numbers for solar cycle 23[J]. Chin. J. Space Sci., 1997, 17(3):255-260(田剑华. 用BP神经网络预报模型预报太阳活动第23周的黑子数[J]. 空间科学学报, 1997, 17(3):255-260)
    U.S. GEOLOGICAL SURVEY. Global land cover characteristics database vs. 1:[DB]. Greenbelt, MD:EROS Data Center Distributed Active Archive Center, 1997. http://edcdaac.usgs.gov/glcc/glcc.html
    ANDERS U, KORN O. Model selection in neural networks[J]. Neural Networks, 1999, 12:309-323
    MARZBAN C. Neural Networks for postprocessing model output:ARPS[J]. Mon. Weather Rev., 2003, 131:1103-1111
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(357) PDF Downloads(13) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint