Volume 40 Issue 3
May  2020
Turn off MathJax
Article Contents
LIU Xiaotian, WU Chuanjia, MA Peng, WANG Shuangfeng, LI Mingyu, YIN Yongli. Numerical Simulation of Two-phase Heat Flow and Water Distribution for Water Electrolyzer in Microgravity[J]. Journal of Space Science, 2020, 40(3): 382-393. doi: 10.11728/cjss2020.03.382
Citation: LIU Xiaotian, WU Chuanjia, MA Peng, WANG Shuangfeng, LI Mingyu, YIN Yongli. Numerical Simulation of Two-phase Heat Flow and Water Distribution for Water Electrolyzer in Microgravity[J]. Journal of Space Science, 2020, 40(3): 382-393. doi: 10.11728/cjss2020.03.382

Numerical Simulation of Two-phase Heat Flow and Water Distribution for Water Electrolyzer in Microgravity

doi: 10.11728/cjss2020.03.382
  • Received Date: 2020-02-25
  • Rev Recd Date: 2020-04-09
  • Publish Date: 2020-05-15
  • Water electrolysis technology is a green-hydrogen process, and it is also a critical oxygen filling technology for medium- and long-term manned space missions. To study the effect of gravity on the performance of solid polymer water electrolyzer, the 3D two-phase model and the system model of electrolyzer were established. The water distribution, flow and temperature field were simulated and the effects of microgravity and normal-gravity on the electrolyzer were analyzed. When the electrolyzer placed in microgravity or horizontally, the numerical simulation of the electrolyzer with single-cell showed that the flow and the temperature fields in the electrolyzer are distributed uniformly. However, when the electrolyzer was placed vertically and water supplied horizontally, the water shortage appeared in the electrolyzer due to the oxygen gathered in the upper part. The numerical simulation of the system model indicated that the water distribution of the system is nonuniform in both normal-gravity and microgravity conditions. When the electrolyzer system was placed horizontally, the system flow rates firstly decrease then increase from the bottom cell to the top cell. While when the electrolyzer system was placed in microgravity or vertically, the system flow rates always increase from the bottom cell to the top cell.

     

  • loading
  • [1]
    LIN Zidong, BAI Song, ZHANG Xiaohui. Development prospect of water electrolysis hydrogen production technology[J]. J. Ship Chem. Defense, 2014, 2:48-54(吝子东, 白松, 张晓辉. 水电解制氢技术发展前景[J].舰船防化, 2014, 2:48-54)
    [2]
    CHENG Jun, YE Fang, ZHANG Wei, et al. Development status of proton exchange membrane electrolyzer for energy storage[J]. J. Chem. Bioeng., 2015, 32(01):1-7(程俊, 叶芳, 张伟, 等. 储能用质子交换膜电解池的发展现状[J]. 化学与生物工程, 2015, 32(01):1-7)
    [3]
    YIN Xuling, YE Fang, GUO Hang, et al. Two-dimensional numerical simulation of transient response of two-phase heat and mass transfer in a proton exchange membrane electrolyzer cell[J]. J. Sust. Energ., 2018, 8(1):10-22(伊许玲, 叶芳, 郭航, 等. 质子交换膜电解池两相传热传质瞬态响应二维数值模拟[J]. 可持续能源, 2018, 8(1):10-22)
    [4]
    CARMO M, FRITZ D L, MERGE J, et al. A comprehensive review on PEM water electrolysis[J]. Int. J. Hydrogen Energ., 2013, 38(12):4901-4934
    [5]
    LI Junrong, YIN Yongli, ZHOU Kanghan, et al. Progress of oxygen generation technology by water electrolysis in space station[J]. J. Aerosp. Med. Med. Eng., 2013, 26(3):215-220(李俊荣, 尹永利, 周抗寒, 等. 空间站电解制氧技术研究进展[J]. 航天医学与医学工程, 2013, 26(3):215-220)
    [6]
    ZENG Qingtang, ZHENG Chuanxian. Oxygen generation technology by water electrolysis in space station[J]. J. Aerosp. Med. Med. Eng., 1990, 3(3):222-226(曾庆堂, 郑传先. 空间站水电解制氧技术[J]. 航天医学与医学工程, 1990, 3(3):222-226)
    [7]
    YIN Yongli, ZHOU Kanghan, LI Junrong, et al. Study on environmental adaptability design and test of pxygen generation assembly by electrolysis[J]. J. Aerosp. Med. Med. Eng., 2015, 28(5):358-362(尹永利, 周抗寒, 李俊荣, 等. 电解制氧装置环境适应性设计与试验研究[J]. 航天医学与医学工程, 2015, 28(5):358-362)
    [8]
    ZHOU Kanghan, REN Chunbo, WANG Fei, et al. Development and test of 5MPa high pressure proton exchange membrane water electrolysis system[J]. J. Aerosp. Med. Med. Eng., 2012, 25(5):368-371(周抗寒, 任春波, 王飞, 等. 5MPa高压质子交换膜水电解装置的研制与试验[J]. 航天医学与医学工程, 2012, 25(5):368-371)
    [9]
    ZHANG Xinrong, REN Jianxun, LIANG Xingang. Mass optimization of SPE oxygen generation system in manned spacecraft[J]. Tsinghua Sci. Technol., 2002, 42(08):1106-1109(张信荣, 任建勋, 梁新刚. 载人航天器SPE水电解制氧系统的轻量化研究[J]. 清华大学学报.:自然科学版, 2002, 42(08):1106-1109)
    [10]
    PENG Chao. Experimental Study on Gravity Effect and Electrical Properties of Two-Phase Flow in Transparent SPE Electrolytic Cell[D]. Beijing:Graduate School of the Chinese Academy of Sciences, 2012(彭超. 透明SPE电解电池内两相流重力效应及其电性能实验研究[D]. 北京:中国科学院研究生院, 2012)
    [11]
    PENG Chao, ZHAO Jianfu, DU Wangfang, et al. Experimental study of the orientation influence on performance of electrolytic cell[J]. J. Eng. Thermophys., 2013, 34(8):1491-1493(彭超, 赵建福, 杜王芳, 等. 安装方位对电解电池性能影响的实验研究[J]. 工程热物理学报, 2013, 34(8):1491-1493)
    [12]
    ZHAO Jianfu, HU Wenrui. Novel Investigation on the principle of similarity for microgravity two-phase flow[J]. J. Appl. Found. Eng. Sci., 2002, 1:1-7(赵建福, 胡文瑞. 微重力两相流相似模拟准则新探[J]. 应用基础与工程科学学报, 2002, 1:1-7)
    [13]
    KURMAZENKO E A, SAMSONOV N M, GAVRILOV L I, et al. Off-normal situations related to the operation of the electron-VM oxygen generation system aboard the international space station[R]. Rome:SAE Technical Paper, 2005
    [14]
    Millet P. Water electrolysis using EME technology:temperature profile inside a nafion membrane during electrolysis[J]. Electrochim. Acia, 1991, 36(2):263-267
    [15]
    HAN Bo, MO Jingke, KANG Zhenye, et al. Modeling of two-phase transport in proton exchange membrane electrolyzer cells for hydrogen energy[J]. Int. J. Hydrogen Energ., 2017, 42(7):4478-4489
    [16]
    ALDAS K, PEHLIVANOGLU N, MAT M D. Numerical and experimental investigation of two-phase flow in an electrochemical cell[J]. Int. J. Hydrogen Energ., 2008, 33(14):3668-3675
    [17]
    AUBRAS F, DESEURE J, KADJO J-J A, et al. Two-dimensional model of low-pressure PEM electrolyser:two-phase flow regime, electrochemical modelling and experimental validation[J]. Int. J. Hydrogen Energ., 2017, 42(42):26203-26216
    [18]
    OLESEN A C, ROMER C, KAR S K. A numerical study of the gas-liquid, two-phase flow maldistribution in the anode of a high pressure PEM water electrolysis cell[J]. Int. J. Hydrogen Energ., 2016, 41(1):52-68
    [19]
    NIE J, CHEN Y. Numerical modeling of three-dimensional two-phase gas-liquid flow in the flow field plate of a PEM electrolysis cell[J]. Int. J. Hydrogen Energ., 2010, 35(8):3183-3197
    [20]
    ARBABI F, MONTAZERI H, ABOUATALLAH R, et al. Three-dimensional computational fluid dynamics modelling of oxygen bubble transport in polymer electrolyte membrane electrolyzer porous transport layers[J]. J. Electrochem. Soc., 2016, 163(11):3062-3069
    [21]
    YU Jiang, YAN Kangping, XIA Guangyi, et al. Numerical simulation for temperature field in the anode of SPE water electrolyzer[J]. Sichuan J. Chem. Ind., 2007, 10:9-12(于江, 闫康平, 夏广义, 等. SPE水电解槽阳极温度场数值模拟[J]. 四川化工, 2007, 10(05):9-12)
    [22]
    LI Linlin, ZHANG Jili, ZHOU Kanghan. Numerical simulation analysis of single-phase flow field in micro-flow-channels of the small square cylinders in the electrolysis oxygen generation[J]. J. Aerosp. Med. Med. Eng., 2009, 22(1):22-26(李林林, 张吉礼, 周抗寒. 电解水制氧槽方柱群微小流道单相流场数值模拟分析[J]. 航天医学与医学工程, 2009, 22(1):22-26)
    [23]
    LI Linlin, ZHANG Jili. Experimental study on single phose flow field of micro-square cylinder group in oxygen generation sample by PIV technique[J]. J. Harbin Univ. Technol., 2008, 40(8):1222-1226(李林林, 张吉礼. 电解制氧槽试件微柱群单相流场PIV测试[J]. 哈尔滨工业大学学报, 2008, 40(8):1222-1226)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(457) PDF Downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return