Volume 40 Issue 4
Jul.  2020
Turn off MathJax
Article Contents
DU Yuchen, WANG Jindong, ZHANG Yiteng. Error Correction Method of Magnetic Field Gradient Tensor Measurement Based on Vector Magnetometer[J]. Journal of Space Science, 2020, 40(4): 513-522. doi: 10.11728/cjss2020.04.513
Citation: DU Yuchen, WANG Jindong, ZHANG Yiteng. Error Correction Method of Magnetic Field Gradient Tensor Measurement Based on Vector Magnetometer[J]. Journal of Space Science, 2020, 40(4): 513-522. doi: 10.11728/cjss2020.04.513

Error Correction Method of Magnetic Field Gradient Tensor Measurement Based on Vector Magnetometer

doi: 10.11728/cjss2020.04.513
  • Received Date: 2019-04-19
  • Rev Recd Date: 2020-01-01
  • Publish Date: 2020-07-15
  • When the satellite is in orbit, the spacecraft will generate some magnetic interference. Generally, the sensor is installed away from the spacecraft by the extension rod, or the magnetic field gradient measurement method is performed by using multiple magnetic field sensors to eliminate the magnetic interference of the spacecraft. When using a magnetic field gradient tensor to measure the magnetic gradient, the structure of the tensor itself will bring errors to the measurement. In this paper, the error of five main tensor structures is simulated, and the measurement error of the cross-shaped structure is the smallest. In addition to the error of the structure itself, the main error of tensor consists of two parts, i.e. the error of the three-axis magnetometer itself and the misalignment error of the tensor. In this paper, the ellipsoid fitting algorithm is used to correct the error of the magnetometer itself. The measured scale field RMS (Root Mean Square) of the magnetometer is 0.864nT. Aiming at the installation error of tensor, a correction algorithm for misalignment error between orthogonal systems is proposed. The simulation results show that corrected misalignment angle error is ≤ 3.2×10-5 rad and the algorithm can reduce misalignment error of tensor.

     

  • loading
  • [1]
    CHEN Siwen. Control and measurement of satellite magnetic cleanliness[J]. Prog. Geophys., 2009, 24(2):797-800(陈斯文. 卫星磁洁净的控制和测量[J]. 地球物理学进展, 2009, 24(2):797-800)
    [2]
    ZHOU Bin, WANG Jindong. Influence of magnetic component distribution of satellite to eliminating remanant magnetic field by gradient method[J]. Chin. Space Sci. Technol., 2013, 5:29-34(周斌, 王劲东. 卫星磁部件分布对梯度法消除剩磁的影响分析[J]. 中国空间科学技术, 2013, 5:29-34)
    [3]
    ZHANG Yiteng, LI Lei, ZHOU Bin, et al. Magnetic field gradient tensor measurement to eliminate satellite magnetic interference[J]. J. Beijing Univ. Aeron. Astron., 2016, 42(05):920-926(张艺腾, 李磊, 周斌, 等. 磁场梯度张量测量法消除卫星磁干扰[J]. 北京航空航天大学学报, 2016, 42(05):920-926)
    [4]
    YIN G, ZHANG Y T, FAN H B, et al. Automatic detection of multiple UXO-like targets using magnetic anomaly inversion and self-adaptive fuzzy c-means clustering[J]. Expl. Geophys., 2015, 48(1):67-75
    [5]
    LEE K M, LI M. Magnetic tensor sensor for gradient based localization of ferrous object in geomagnetic field[J]. IEEE Trans. Magn., 2016, 52(8):1-10
    [6]
    ZHANG Changda. Some problems on magnetic anomaly detection[J]. J. Eng. Geophys., 2007(6):549-553(张昌达. 关于磁异常探测的若干问题[J]. 工程地球物理学报, 2007(6):549-553)
    [7]
    GAMEY T J, TATIANA S, WILLIAM E D, et al. Initial design and testing of a full-tensor airborne SQUID magnetometer for detection of unexploded ordnance[J]. SEG Tech. Program Expanded Abstr., 2004, 23:798-801
    [8]
    LEE K M, LI M. Magnetic tensor sensor for gradient-based localization of ferrous object in geomagnetic field[J]. IEEE Trans. Magn., 2016, 52(8):4002610
    [9]
    LV Junwei, CHI Cheng, YU Zhentao, et al. Research on elliptic error elimination method of magnetic gradient tensor invariant[J]. Acta Phys. Sin., 2015, 64(19):0190701(吕俊伟, 迟铖, 于振涛, 等. 磁梯度张量不变量的椭圆误差消除方法研究[J]. 物理学报, 2015, 64(19):0190701)
    [10]
    YU Zhentao, LV Junwei, XU Suqin, et al. Real-time localization method of magnetic targets for motion platform[J]. J. Harbin Eng. Univ., 2015, 36(5):606-610(于振涛, 吕俊伟, 许素芹, 等. 运动平台的磁性目标实时定位方法[J]. 哈尔滨工程大学学报, 2015, 36(5):606-610)
    [11]
    LIU Limin. Structural Design, Error Analysis and Underwater Target Detection of Fluxgate Tensor[D]. Jilin:Jilin University, 2012(刘丽敏. 磁通门张量的结构设计、误差分析及水下目标探测[D]. 吉林:吉林大学, 2012)
    [12]
    YIN Gang, ZHANG Yingtang, FAN hongbo, et al. Linear calibration method of magnetic gradient tensor system[J]. Measurement, 2014, 56:8-18
    [13]
    YU Zhentao, LV Junwei, BI Bo, et al. A carrier magnetic interference compensation method for tetrahedral magnetic gradient tensor system[J]. Acta Phys. Sin., 2014, 63(11):139-144(于振涛, 吕俊伟, 毕波, 等. 四面体磁梯度张量系统的载体磁干扰补偿方法[J]. 物理学报, 2014, 63(11):139-144)
    [14]
    LI Xiang, WANG Yongjun, LI Zhi. The misalignment error of vector sensor in attitude and attitude system and its correction[J]. J. Transduct. Technol., 2017, 30(2):266-271(李翔, 王勇军, 李智. 航姿系统矢量传感器非对准误差及其校正[J]. 传感技术学报, 2017, 30(2):266-271)
    [15]
    LI Qingzhu, LI Zhining, ZHANG Yingtang, et al. Integral correction of magnetic gradient tensor system based on ellipsoid fitting[J]. J. Chin. Inertial Technol., 2018, 26(02):187-195(李青竹, 李志宁, 张英堂, 等. 基于椭球拟合的磁梯度张量系统集成校正[J]. 中国惯性技术学报, 2018, 26(02):187-195)
    [16]
    LI Xiang, WANG Yongjun, LI Zhi. The misalignment error of vector sensor in attitude and attitude system and its correction[J]. J. Transduct. Technol., 2017, 30(2):266-271(李翔, 王勇军, 李智. 航姿系统矢量传感器非对准误差及其校正[J]. 传感技术学报, 2017, 30(2):266-271)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(438) PDF Downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return