Volume 40 Issue 4
Jul.  2020
Turn off MathJax
Article Contents
LI Yanju, WU Yue, FAN Chunping, NIAN Nian. Technology of Biotransformation and Oxygen Production from Perchlorate on the Surface of Mars[J]. Journal of Space Science, 2020, 40(4): 531-539. doi: 10.11728/cjss2020.04.531
Citation: LI Yanju, WU Yue, FAN Chunping, NIAN Nian. Technology of Biotransformation and Oxygen Production from Perchlorate on the Surface of Mars[J]. Journal of Space Science, 2020, 40(4): 531-539. doi: 10.11728/cjss2020.04.531

Technology of Biotransformation and Oxygen Production from Perchlorate on the Surface of Mars

doi: 10.11728/cjss2020.04.531
  • Received Date: 2019-05-16
  • Rev Recd Date: 2019-12-28
  • Publish Date: 2020-07-15
  • The extreme anoxic conditions on the surface of the Mars and the strong oxidation environment formed by the widespread perchlorate pose a direct threat to the human landing, exploration and the future construction of habitable environment. Based on the current relative research results of perchlorate distribution on the Mars, the research progress of perchlorate biodegradation on the Earth and the demand of resources and environment for human landing on Mars, an assumption and its technology are proposed to use biological method to make oxygen from perchlorate in-situ on the Mars. A forward-looking analysis of oxygen bio-conversion process, influencing factors, key technology and difficulties of bio-conversion in-situ oxygen production, planetary protection and by-product recycling, and the subsequent environmental reformation on Mars are put forward. It is expected to realize at the same time perchlorate harmless treatment and oxygen bio-conversion in cite from perchlorate on the Mars, to turn harm into benefit, to provide new thoughts and feasible methods for the creation of living conditions for human landing and even immigration to Mars.


  • loading
  • [1]
    Toner J D, Catling D C. Chlorate brines on Mars:implications for the occurrence of liquid water and deliquescence[J]. Earth Planet. Sci. Lett., 2018, 497:161-168
    CIVIS S, KNIZEK A, FERUS M, et al. Formation of methane and (per) chlorates on Mars[J]. ACS Earth Space Chem., 2019, 3(2):221-232
    HECHT M H, KOUNAVES S P, QUINN R C, et al. Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix Lander Site[J]. Science, 2009, 325:64-67
    DAVILA A F, WILLSON D, COATES J D, et al. Perchlorate on Mars:a chemical hazard and a resource for humans[J]. Int. J. Astrobiol., 2013, 12(4):1-5
    GLAVIN D P, FREISSINET C, MILLER K E, et al. Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater[J]. JGR Planet., 2013, 118(10):1955-1973
    NAVARRO-GONZALEZ R, STERN J, SUTTER B, et al. Possible detection of perchlorates by the Sample Analysis at Mars (SAM) Instrument:comparison with previous missions[C]//European Geosciences Union General Assembly. Vienna:European Geosciences Union, 2013
    CLARK B C, KOUNAVES S P. Evidence for the distribution of perchlorates on Mars[J]. Int. J. Astrobiol., 2016, 15(04):311-318
    WU Z C, WANG A L, LING Z C. Spectroscopic study of perchlorates and other oxygen chlorides in a martian environmental chamber[J]. Earth Planet. Sci. Lett., 2016, 452:123-132
    WU Z C, WANG A L, FARRELL WILLIAM M. Forming perchlorates on Mars through plasma chemistry during dust events[J]. Earth Planet. Sci. Lett., 2018, 504:94-105
    TONER J D, CATLING D C, LIGHT B. The formation of supercooled brines, viscous liquids, and low-temperature perchlorate glasses in aqueous solutions relevant to Mars[J]. Icarus, 2014, 233:36-47
    SHI Jiankui, LIU Zhenxing, CHENG Zhengwei. An analysis of results of the Mars exploration[J]. Sci. Technol. Rev., 2011, 29(10):64-70(史建魁, 刘振兴, 程征伟. 火星探测研究结果分析[J]. 科技导报, 2011, 29(10):64-70)
    HOGANCAMP J V, SUTTER B, MORRIS R V. Chlorate/Fe-Bearing phase mixtures as a possible source of oxygen and chlorine detected by the sample analysis at Mars instrument in Gale Crater, Mars[J]. JGR Planet., 2018, 123(11):2920-2938
    STAMENKOVIĆ V, WARD L M, MISCHNA M, et al. O2 solubility in Martian near-surface environments and implications for aerobic life. Nature Geoscience[J]. Nat. Geosci., 2018, 11(12):905-909
    STONE S W, YELLE R V, BENNA M, et al. Thermal structure of the Martian upper atmosphere from MAVEN NGIMS[J]. JGR Planet., 2018, 123(11):2842-2867
    WEN Ziqiang, ZHENG Wenjing, SHEN Haoyu, et al. Research progress on the hazards, water pollution status and removal technique of perchlorate[J]. Environ. Chem., 2019, 38(01):209-216(闻自强, 郑雯静, 沈昊宇, 等. 高氯酸盐的危害、水污染现状与去除技术研究进展[J]. 环境化学, 2019, 38(01):209-216)
    LI Qin, MENG Wei, ZHANG Jinliang. Current status of research on health hazards of perchlorate[J]. J. Toxicol., 2009, 23(03):250-252(李琴, 孟伟, 张金良. 高氯酸盐的健康危害研究现状[J]. 毒理学杂志, 2009, 23(03):250-252)
    CAO J S, DANIEL Elliott, ZHANG W X. Perchlorate reduction by nanoscale iron particles[J]. J. Nanopart. Res., 2005, 7:499-506
    ZHAO K, LI H T, TIAN S Q. A facile low-temperature synthesis of hierarchical porous Co3O4 micro/nano structures derived from ZIF-67 assisted by ammonium perchlorate[J]. Inorg. Chem. Front., 2019, 6(3):715-722
    WU C W, SULLIVAN KYLE, CHOWDHURY, et al. Encapsulation of perchlorate salts within metal oxides for application as nanoenergetic oxidizers[J]. Adv. Funct. Mater., 2012, 22(1):78-85
    QIU Hua, LI Jialu, LONG Yutao. Screening and degradation characteristics of perchlorate-degrading bacteria[J]. Technol. Water Treat., 2015, 41(4):58-61(邱华, 李佳璐, 龙雨涛. 高氯酸盐高效降解菌的筛选及降解特性[J]. 水处理技术, 2015, 41(4):58-61)
    LIU N, QIN X M, AN Y L. Effects of multi-electron acceptor coexistence system on perchlorate biodegradation and microbial community variation[J]. Water Sci. Technol.:Water Supply, 2018, 18(3/4):1428-1436
    MOTZER W E. Perchlorate:problem, detection, and solutions[J]. Environ. Forensics, 2001, 2(4):301-311
    HE Feihong. Microbes build Mars base[J]. Super Sci., 2013, 07:18-19(贺飞鸿. 微生物打造火星基地[J]. 大科技:科学之谜, 2013, 07:18-19)
    HAO Jian, LI Danming, DANG Wenqiang, et al. Progress in in-situ resource utilization of atmospheric on Mars[J]. Vacuum Cryogenics, 2018, 24(5):289-296(郝剑, 李丹明, 党文强, 等. 火星二氧化碳及水资源利用的研究进展[J]. 真空与低温, 2018, 24(5):289-296)
    BALK M, GELDER T, WEELINK S A. Perchlorate reduction by the thermophilic bacterium moorella perchloratireducens sp. nov. isolated from underground gas storage[J]. Appl. Environ. Microbiol., 2008, 74(2):403-409
    SHI Qiong, LIANG Shuang, WANG Shuguang. Perchlorate removal in water by bacteria associated with Fe0[J]. J. Shandong Univ.:Eng. Sci., 2012, 42(6):107-114(时琼, 梁爽, 王曙光. 零价铁联合微生物去除水中高氯酸盐的研究[J]. 山东大学学报, 2012, 42(6):107-114)
    LEVAKOV, ILIL, RONEN, et al. Combined in-situ bioremediation treatment for perchlorate pollution in the vadose zone and groundwater[J]. J. Hazard. Mater., 2019, 369:439-447
    PENG Yinxian, WU Chundu, NING Degang, et al. Development of perchlorate removal method[J]. Environ. Sci. Tech., 2009, 32(02):87-90(彭银仙, 吴春笃, 宁德刚, 等. 高氯酸盐去除方法研究进展[J]. 环境科学与技术, 2009, 32(02):87-90)
    CAO F F, JAUNAT, JESSY, et al. Worldwide occurrence and origin of perchlorateion in waters:a review[J]. Sci. Total Environ., 2019, 661:737-749
    XIE Yuxuan, GUAN Xiangyu, YU Lisha. The study of the structure of perchlorate(ClO4-)-degrading bacterial communities under autotrophic conditions[J]. Biotech. Bull., 2014, 04:169-175(谢宇轩, 关翔宇, 于丽莎. 自养条件下高氯酸盐降解细菌群落研究[J]. 生物技术通报, 2014, 04:169-175)
    LI Haixiang, ZHANG Huan, YAO Yi. Overview of advances in research of microbial reductive degradation for perchlorate removal in water[J]. Water Purif. Tech., 2016, 35(1):16-20(李海翔, 张欢, 姚毅. 微生物还原降解水中高氯酸盐的研究进展[J]. 净水技术, 2016, 35(1):16-20)
    AN Y X, Kim Youngwha, ZUO S X. Analysis of archaeal community in autotrophic perchlorate- degrading enrichment culture[J]. J. Life Sci., 2017, 27(4):435-441
    WAN D J, NIU Z H, ZHOU J. Influence of electron donors on perchlorate reduction and microbial community structure[J]. Environ. Eng. Sci., 2018, 35(11):1255-1262
    WANG Rui, LIU Fei, QIN Li. Anaerobic biological reduction of perchlorate in the presence of nitrat[J]. Earth Sci.:J. China Univ. Geosci., 2012, 37(2):307-3b11(王蕊, 刘菲, 秦莉.高氯酸盐在硝酸盐还原条件下的厌氧生物降解[J]. 地球科学:中国地质大学学报, 2012, 37(2):307-311)
    SONG Y G, LOGAN B E.Effect of O2 exposure on perchlorate reduction by Dechlorosoma sp. KJ[J]. Water Res., 2004, 38(6):1626-1632
    FENG Gao, WANG Qian, ZHANG Yuanyuan, et al. Research progress of microbial method in removing perchlorate[J]. Hebei J. Ind. Sci. Technol., 2014, 31(6):519-524(冯杲, 王倩, 张媛媛, 等. 微生物法去除高氯酸盐的研究进展[J]. 河北工业科技, 2014, 31(6):519-524)
    KUCHARZYK, KATARZYNA H, CRAWFORD, et al. A method for assaying perchlorate concentration in microbial cultures using the fluorescent dye resazurin[J]. J. Microbiol. Meth., 2010, 81(1):26-32
    WU Min, WANG Shuaifeng, GAO Naiyun, et al. Kinetics of biological high-concentration perchlorate reduction and optimization of reaction conditions[J]. J. Cent. South Univ.:Sci. Technol., 2016, 47(11):3958-3964(吴敏, 王帅锋, 高乃云, 等. 生物法还原高浓度高氯酸盐动力学及反应条件的优化[J]. 中南大学学报:自然科学版, 2016, 47(11):3958-3964)
    XU X, GAO B Y, JIN B, et al. Study of microbial perchlorate reduction:considering of multiple pH, electron acceptors and donors[J]. J. Hazard. Mater., 2015, 285:228-235
    QIAN Huijing, XI Shenglan, HE Ping. Biological reduction of perchlorate and optimization[J]. Environ. Sci., 2009, 30(5):1402-1407(钱慧静, 奚胜兰, 何平. 生物法降解高氯酸盐及其优化研究[J]. 环境科学, 2009, 30(5):1402-1407)
    XIE Jie, YANG Zhiquan, CHEN Bing. Optimization control of degradation of perchlorate by sulfur autotrophic bacteria[J]. Technol. Water Treat., 2012, 38(6):32-35(谢杰, 杨志泉, 陈兵. 硫自养菌降解还原高氯酸盐的优化控制研究[J]. 水处理技术, 2012, 38(6):32-35)
    WANG Qian, GUO Yankai, NIU Boxian, et al. Study on the affecting factors of perchlorate biodegradation[J]. J. Hebei Univ. Sci. Technol., 2015, 36(06):652-658(王倩, 郭延凯, 牛博贤, 等. 生物降解高氯酸盐的影响因素研究[J]. 河北科技大学学报, 2015, 36(06):652-658)
    CHAUDHURI S K, CONNOR S M, GUSTAVSON R L. Environmental factors that control microbial perchlorate reduction[J]. Appl. Environ. Microbiol., 2002, 68 (12):4425-4430
    SEONG J N, SANG H L, KYUNG-SUK C, et al. Microbial treatment of high-strength perchlorate wastewater[J]. Bioresour. Technol., 2011, 102(2):835-841
    WU Chundu, GUO Jing, XU Xiaohong. Isolation, identification and characterization of perchlorate degrading bacteria[J]. Ecol. Environ. Sci., 2010, 19(2):281-285(吴春笃, 郭静, 许小红. 高氯酸盐降解菌的分离鉴定及特性研究[J]. 生态环境学报, 2010, 19(2):281-285)
    ZHANG Yuanyuan, GUO Yankai, ZHANG Chao. Effect of non-dissolved quinone on perchlorate reduction by strain GWF[J]. Environ. Sci., 2016, 37(03):988-993(张媛媛, 郭延凯, 张超. 非水溶性醌加速菌GWF生物还原高氯酸盐的研究[J]. 环境科学, 2016, 37(03):988-993)
    WANG Yiyi. Sulfur Autotrophic Purification Mechanism of Groundwater Perchlorate and Nitrate Combined Pollution[D]. Henan:Henan University of Technology, 2018(王依依. 地下水高氯酸盐和硝酸盐复合污染的硫自养净化机制[D]. 河南:河南工业大学, 2018)
    YE L, YOU H, YAO J, et al. Water treatment technologies for perchlorate:A review[J]. Desalination, 2012, 298:1-12
    XU J L, TRIMBLE J J, LISA S. Chlorate and nitrate reduction pathways are separately induced in the perchlorate-respiring bacterium dechlorosoma sp. KJ and the chlorate-respiring bacterium pseudomonas sp. PDA[J]. Water Res., 2004, 38(3):673-680
    CLARK I C, MELNYK R A, IAVARONE A T, et al. Chlorate reduction in Shewanella algae ACDC is a recently acquired metabolism characterized by gene loss, suboptimal regulation and oxidative stress[J]. Mol. Microbiol., 2014, 94(1):107-125
    ZHANG yinan, PENG Jing, ZOU Leyang, et al. An overview of planetary protection development[J]. J. Deep Space Explor., 2019, 6(1):3-8(张轶男, 彭兢, 邹乐洋, 等. 国际行星保护发展综述[J]. 深空探测学报, 2019, 6(1):3-8)
    ZHANG Lantao, YANG Hong, YIN Hong, et al. Prevention and control links analysis and implementation suggestions of planetary protection[J]. Spacecr. Eng., 2016, 25(5):105-110(张兰涛, 杨宏, 印红, 等. 行星保护的防控环节分析及实施建议[J]. 航天器工程, 2016, 25(5):105-110)
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(508) PDF Downloads(98) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint