Volume 40 Issue 4
Jul.  2020
Turn off MathJax
Article Contents
AI Haiping, CHEN Li. Passivity Active Disturbance Rejection Collision Avoidance Compliant Control of Dual-arm Space Robot Capture Spacecraft[J]. Journal of Space Science, 2020, 40(4): 584-594. doi: 10.11728/cjss2020.04.584
Citation: AI Haiping, CHEN Li. Passivity Active Disturbance Rejection Collision Avoidance Compliant Control of Dual-arm Space Robot Capture Spacecraft[J]. Journal of Space Science, 2020, 40(4): 584-594. doi: 10.11728/cjss2020.04.584

Passivity Active Disturbance Rejection Collision Avoidance Compliant Control of Dual-arm Space Robot Capture Spacecraft

doi: 10.11728/cjss2020.04.584
  • Received Date: 2019-05-20
  • Rev Recd Date: 2019-07-27
  • Publish Date: 2020-07-15
  • The collision avoidance compliant control of dual-arm space robot on-orbit capture of non-cooperative spacecraft is studied. For this reason, a spring class buffer device composed of Rotary Series Elastic Actuator (RSEA) is mounted between the joint motor and manipulator, which functions are as follows. First, the deformation of its buffer spring can absorb the impact energy of the contact and collision phase. Second, combining the reasonable collision avoidance compliant control scheme to ensure that the impact torque of the joints during motion stabilization phase can be limited to a safe range. The dynamic models of the open chain dual-arm space robot with RSEA and the spacecraft before capture are obtained by using the Lagrange approach and Newton-Euler method. Then, based on the impulse theorem, the geometrical and kinematic conditions of closed chain, the integrated dynamic model of the hybrid system is derived. Finally, considering the post-capture unstable closed-chain hybrid system which is caused by the impact effect, a passivity active disturbance rejection collision avoidance compliant control is proposed for the stabilization control. In addition, the joint torques are distributed by the minimum weighted norm theory to ensure the coordinated operation of the manipulators. Numerical simulation verifies the impact resistance performance of the buffer device and the effectiveness of the proposed strategy.


  • loading
  • [1]
    FLORES-ABAD A, MA O, PHAM K, et al. A review of space robotics technologies for on-orbit servicing[J]. Prog. Aerosp. Sci., 2014, 68:1-26
    DAI Qiaolian, CHEN Li. L2 Back-stepping control based on disturbance observer for space robot under dead-zone effect[J]. Chin. J. Space Sci., 2017, 37(4):499-506(戴巧莲, 陈力. 具有死区特性的空间机器人基于干扰观测器的L2反步控制[J]. 空间科学学报, 2017, 37(4):499-506)
    GUO Chuangqiang, NI Fenglei, LIU Hong. Spacecraft attitude disturbance optimization of space robot under multi-position restraint[J]. Chin. J. Space Sci., 2015, 35 (2):230-236(郭闯强, 倪风雷, 刘宏. 多目标位姿约束下空间机器人载体姿态扰动优化[J]. 空间科学学报, 2015, 35(2):230-236)
    YU X Y, CHEN L. Singular perturbation adaptive control and vibration suppression of free-flying flexible space manipulators[J]. Proc. Inst. Mech. Eng. Part C:J. Mech. Eng. Sci., 2015, 229(11):1989-1997
    BONING P, DUBOSKY S. A kinematic approach to determining the optimal actuator sensor architecture for space robots[J]. Int. J. Robot. Res., 2011, 30(9):1194-1204
    ZHAO Hang, ZHAO Yang, TIAN Hao, et al. Key techniques and applications of space cellular robotic system[J]. J. Astronaut., 2018, 39(10):16-25(赵航, 赵阳, 田浩, 等. 空间细胞机器人系统关键技术及其应用[J]. 宇航学报, 2018, 39(10):16-25)
    YUAN Changqing, LI Junfeng, WANG Tianshu, et al. An optimal and robust attitude-tracking control of spacecraft based on inverse system method[J]. Eng. Mech., 2008, 25(2):214-218(袁长清, 李俊峰, 王天舒, 等. 基于逆系统方法的航天器姿态跟踪最优鲁棒控制[J]. 工程力学, 2008, 25(2):214-218)
    PENG J Q, XU W F, LIANG B, et al. Pose measurement and motion estimation of space non-cooperative targets based on Laser Radar and stereo-vision fusion[J]. IEEE Sens. J., 2019, 19(8):3008-3019
    JIA Y H, HU Q, XU S J. Dynamics and adaptive control of a dual-arm space robot with closed-loop constraints and uncertain inertial parameters[J]. Acta Mech. Sin., 2014, 30(1):112-124
    CHENG Jing, CHEN Li. Elm neural network control of attitude management and auxiliary docking maneuver after dual-arm space robot capturing spacecraft[J]. Robot, 2017, 39(5):724-732(程靖, 陈力. 空间机器人双臂捕获航天器后姿态管理、辅助对接操作一体化ELM神经网络控制[J]. 机器人, 2017, 39(5):724-732)
    REKLEITIS G, PAPADOPOULOS E. On-orbit cooperating space robotic servicers handling a passive object[J]. IEEE Trans. Aerosp. Electron. Syst., 2015, 51(2):802-814
    AGHILI F. A prediction and motion-planning scheme for visually guided robotic capturing of free-Floating tumbling objects with uncertain dynamics[J]. IEEE Trans. Robot., 2012, 28(3):634-649
    OKI T, ABIKO S, NAKANISHI H, et al. Time-optimal detumbling maneuver along an arbitrary arm motion during the capture of a target satellite[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco:IEEE, 2011:625-630
    GU X, WANG K, CHENG T, et al. Mechanical design of a 3-DOF humanoid soft arm based on modularized series elastic actuator[C]//IEEE International Conference on Mechatronics and Automation. Beijing:IEEE, 2015:1127-1131
    WANG M, SUN L, YI W, et al. Nonlinear disturbance observer based torque control for series elastic actuator[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Daejeon:IEEE, 2016:286-291
    HUANG Y, XUE W. Active disturbance rejection control:methodology and theoretical analysis[J]. ISA Trans., 2014, 53(4):963-976
    REN C, MA S. Passivity-based model free control of an omnidirectional mobile robot[C]//IEEE International Conference on Mechatronics. Nagoya:IEEE, 2015:262-267
    QING Z, LINDA Q. On Stability analysis of active disturbance rejection control for nonlinear time-varying plants with unknown dynamics[C]//IEEE Conference on Decision and Control. New Orleans:IEEE, 2007:12-14
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(455) PDF Downloads(62) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint