Volume 40 Issue 6
Nov.  2020
Turn off MathJax
Article Contents
HE Yuxuan, LIU Yong, ZHANG Qiang. Statistical Study on the Positive High Potential of Polar Satellite at Low Altitude[J]. Chinese Journal of Space Science, 2020, 40(6): 1074-1083. doi: 10.11728/cjss2020.06.1074
Citation: HE Yuxuan, LIU Yong, ZHANG Qiang. Statistical Study on the Positive High Potential of Polar Satellite at Low Altitude[J]. Chinese Journal of Space Science, 2020, 40(6): 1074-1083. doi: 10.11728/cjss2020.06.1074

Statistical Study on the Positive High Potential of Polar Satellite at Low Altitude

doi: 10.11728/cjss2020.06.1074
  • Received Date: 2019-04-24
  • Rev Recd Date: 2020-03-14
  • Publish Date: 2020-11-15
  • Based on the surface potential data of Polar satellite from 1996 to 2008, a statistical study is presented among the positive high potential of the satellite surface at low altitudes (abnormal events), the solar activity, and the MLT distributions. The main results are as follows. Firstly, the solar radiation positively correlates with the events numbers. The more active the Sun is, the more times abnormal events occur, while the solar radiation does not affect the surface potential of the spacecraft. Secondly, the proportion of abnormal events has seasonal changings. Thirdly, in the high solar activity years, the abnormal events occur more frequently in winter and summer in comparison with spring and autumn. In the low solar activity years, the abnormal events numbers maintain low values in monthly changings, and they have no apparent rules. Fourthly, there are many similarities of abnormal events in hemisphere distributions: the abnormal events do not occur at geomagnetic latitudes between 50° and 60°, but occur more frequently in the polar regions and the dusk sides. However, the abnormal events also have differences in hemispheres distributions: the abnormal events occur more frequently in the southern hemisphere. Lastly, even in the solar maximum year, the abnormal events occurrence rate does not exceed 10%.

     

  • loading
  • [1]
    KOONS H C, MAZUR J E, SELESNICK R S, et al. The impact of the space environment on space systems[C]// 6th Spacecraft Charging Technology Conference. Huntsville: University of Alabama Press, 2000
    [2]
    WANG Ji, QIU Jiawen, QIN Xiaogang, et al. Simulation of deep charging of spacecraft medium[J]. Chin. J. Space Sci., 2008, 28(3):242-247(王骥, 邱家稳, 秦晓刚, 等. 航天器介质深层充电模拟研究[J]. 空间科学学报, 2008, 28(3):242-247)
    [3]
    LAAKSO H, PEDERSEN A. Ambient electron density derived from differential potential measurements[J]. Geophys. Monogr. Ser., 1998, 4(1):34-40
    [4]
    GARRETT H B, RUBIN A G. Spacecraft charging at geosynchronous orbit-generalized solution for eclipse passage[J]. Geophys. Res. Lett., 1978, 5(10):865-868
    [5]
    PEDERSEN A. Solar wind and magnetosphere plasma diagnostics by spacecraft electrostatic potential measurements[J]. Ann. Geophys., 1995, 13(2):118-129
    [6]
    HARVEY P, MOZER F S, PANKOW D, et al. The electric field instrument on the polar satellite[J]. Space Sci. Rev., 1995, 71(1/2/3/4):583-596
    [7]
    MAYNARD N C. Electric Field Measurements in Moderate to High Density Space Plasmas with Passive Double Probes[M]. Washington D C: American Geophysical Union, 2013:13-27
    [8]
    PFAFF F, BOROVSKY E, YOUNG T. Measurement Techniques in Space Plasmas-fields[M]. Washington D C: American Geophysical Union, 1998
    [9]
    PEDERSEN A, CATTELL C A, F LTHAMMAR C G, et al. Quasistatic electric field measurements with spherical double probes on the GEOS and ISEE satellites[J]. Space Sci. Rev., 1984, 37(3/4):269-312
    [10]
    LAAKSO H, PFAFF R, JANHUNEN P. Polar observations of electron density distribution in the Earth’s magnetosphere. 2. density profiles[J]. Ann. Geophys., 2002, 20(11):1725-1735
    [11]
    STEINBERG J T, GURNETT D A, BANKS P M, et al. Double-probe potential measurements near the spacelab 2 electron beam[J]. J. Geophys. Res., 1988, 93(A9):10001
    [12]
    ESCOUBET C P, PEDERSEN A, SCHMIDT R, et al. Density in the magnetosphere inferred from ISEE 1 spacecraft potential[J]. J. Geophys. Res., 1997, 102(A8):75-83
    [13]
    SCUDDER J D, CAO X, MOZER F S. Photoemission current-spacecraft voltage relation: key to routine, quantitative low-energy plasma measurements[J]. J. Geophys. Res., 2000, 105(A9):21281-21294
    [14]
    MULLEN E G, GUSSENHOVEN M S, HARDY D A, et al. SCATHA survey of high-level spacecraft charging in sunlight[J]. J. Geophys. Res., 1986, 91(A2):1474
    [15]
    LAAKSO H. Variation of the spacecraft potential in the magnetosphere[J]. J. Atmos. Sol. Terr. Phys., 2002, 64(16):1735-1744
    [16]
    QIAN L, ROBLE R G, SOLOMON S C, et al. Calculated and observed climate change in the thermosphere, and a prediction for solar cycle 24[J]. Geophys. Res. Lett., 2006, 33(23):L23705
    [17]
    WANG Hongbo, XIONG Jianning, ZHAO Changyin. The mid-term forecast method of solar radiation index[J]. Chin. Astron. Astrophy., 2014, 55(4):302-312(汪宏波, 熊建宁, 赵长印. 太阳辐射指数F10.7的中期预报方法[J]. 天文学报, 2014, 55(4):302-312)
    [18]
    WU Yingyan. Seasonal variation and long-term variation of Sq intensity of geomagnetic field in Beijing area[J]. Chin. J. Geophys., 2018, 61(9):44-51(吴迎燕. 北京地区地磁场Sq强度的季节变化和长期变化[J]. 地球物理学报, 2018, 61(9):44-51)
    [19]
    MA R P, JI Q, XU J Y. Wavelet analysis of the quasi-27d oscillations of solar index F10.7[J]. Chin. Astron. Astrophy., 2007, 31(4):400-409
    [20]
    WANG Hui, MA Shuying, LUEHR H, et al. Field current distribution during intense magnetic storm and its response to interplanetary conditions: CHAMP satellite observation[J]. Chin. Sci. Bull., 2006, 51(24):2888-2897(王慧, 马淑英, LUEHR H, 等. 强磁暴期间场向电流分布及其对行星际条件的响应: CHAMP卫星观测[J]. 科学通报, 2006, 51(24):2888-2897)
    [21]
    JIAO Weixin, XIAO Zuo, RUSSELL C T. Statistical characteristics of filed current in earthquakes in earth[J]. Chin. J. Geophys., 1997, 40(4):453-459(焦维新, 肖佐, RUSSELL C T. 地球内磁层场向电流的统计特征[J]. 地球物理学报, 1997, 40(4):453-459)
    [22]
    LUHR H, WARNECKE J F, ROTHER M K A. An algorithm for estimating field-aligned currents from single spacecraft magnetic field measurements: a diagnostic tool applied to Freja satellite data[J]. IEEE Trans. Geosci. Remote Sens., 2002, 34(6):1369-1376
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(516) PDF Downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return