Volume 40 Issue 6
Nov.  2020
Turn off MathJax
Article Contents
LIANG Jie, QIN Kaiyu. Influence of Intelligent Hierarchical Control for Flexible-Joint Dual-arm Space Based on Finite Difference Method[J]. Journal of Space Science, 2020, 40(6): 1125-1134. doi: 10.11728/cjss2020.06.1125
Citation: LIANG Jie, QIN Kaiyu. Influence of Intelligent Hierarchical Control for Flexible-Joint Dual-arm Space Based on Finite Difference Method[J]. Journal of Space Science, 2020, 40(6): 1125-1134. doi: 10.11728/cjss2020.06.1125

Influence of Intelligent Hierarchical Control for Flexible-Joint Dual-arm Space Based on Finite Difference Method

doi: 10.11728/cjss2020.06.1125
  • Received Date: 2019-04-12
  • Rev Recd Date: 2020-09-17
  • Publish Date: 2020-11-15
  • Because of their unique properties and good performance, some elastic components, such as the harmonic reducers and the torque sensors, are widely used in the joints of the space robots and manipulators, in order to obtain high reduction ratio. Due to the existence of elastic components, joint flexibility is introduced into the space robot system, which makes its stability control more complex. As a result, the intelligent hierarchical control based on finite difference method and elastic vibration suppression for dual-arm flexible space robot with uncertain parameters is discussed. The hierarchical dynamics model of the system is derived by applying the theory of hierarchical systems, the principle of momentum conservation of the system and the Lagrangian method of the second kind. By the aforementioned model, the non-singular terminal sliding mode control algorithms based on Recurrent Fuzzy Neural Network (RFNN) and the sliding mode control algorithm based on finite difference method are designed. It is found that the uncertain parts of the system are approached by RFNN, and at the same time, in order to avoid the complicated derivative calculation and the requirement of measurable angular acceleration, the sliding mode control based on the finite difference method is used to suppress the vibration of flexible joints. The control algorithm has the significant advantage of being suitable for an arbitrarily sized joint flexible rigidity in theory because it does not involve the common singular perturbation two-time-scale decomposition operation. The system comparison and simulation results show that the proposed intelligent hierarchical control algorithm is superior to the traditional control scheme based on singular perturbation.

     

  • loading
  • [1]
    YU Z W, LIU X F, LI H Q. Dynamics and control of a 6-DOF space robot with flexible panels[J]. Proceed. Institut. Mech. Eng., Part G: J. Aerosp. Eng., 2017, 231(6): 1022-1034
    [2]
    FLORES A A, MA O, PHAM K, et al. A review of space robotics technologies for on-orbit servicing[J]. Prog. Aerosp. Sci., 2014, 68:1-26
    [3]
    TOMASZ R, KAROL S, JUREK Z S. Trajectory optimization of space manipulator with non-zero angular momentum during orbital capture maneuver[C]//AIAA Guidance, Navigation, and Control Conference. San Diego:AIAA, 2016:4-8
    [4]
    PAN F H, DONG K W, ZHONG J M. Adaptive postcapture backstepping control for tumbling tethered space robot-target combination[J]. J. Guid., Control, Dynam., 2016, 39(1):150-156
    [5]
    ZHONG J M, PAN F H. Universal dynamic model of the tethered space robot[J]. J. Aerosp. Eng., 2016, 29(1):1022-1034
    [6]
    LI Junfeng, WANG Zhaolin. Study on attitude dynamics of a liquid-filled spacecraft with manipulators[J]. J. Astronaut., 1999, 20(2):81-86(李俊峰, 王照林. 带空间机械臂的充液航天器姿态动力学研究[J]. 宇航学报, 1999, 20(2):81-86)
    [7]
    GE Xinsheng, CUI Wei, ZHAO Qiuling. Trajectory tracking control and vibration suppression of rigid flexible manipulators[J]. Eng. Mech., 2005, 22(6):188-191(戈新生, 崔玮, 赵秋玲. 刚柔性耦合机械臂轨迹跟踪与振动抑制[J]. 工程力学, 2005, 22(6):188-191)
    [8]
    CAI Guoping, LI Lin, HONG Jiazhen. Optimal tracking control of a flexible hub-beam system[J]. Chin. J. Theor. Appl. Mech., 2006, 38(1):97-105(蔡国平, 李琳, 洪嘉振. 中心刚体—柔性梁系统的最优跟踪控制[J]. 力学学报, 2006, 38(1):97-105)
    [9]
    WANG Congqing, ZHANG Chenglong. Dynamic control of a free-floating flexible dual-arm space robotic system[J]. Chin. J. Mech. Eng., 2007, 43(10):196-200(王从庆, 张承龙. 自由浮动柔性双臂空间机器人系统的动力学控制[J]. 机械工程学报, 2007, 43(10):196-200)
    [10]
    YAN Shaoze, HUANG Tieqiu, WU Delong, et al. Study on dynamics modeling of a flexible appendage of spacecraft[J]. Missil. Space Veh., 1999, 2:31-39(阎绍泽, 黄铁球, 吴德隆, 等. 空间飞行器柔性附件动力学建模方法研究[J]. 导弹与航天运载技术, 1999, 2:31-39)
    [11]
    DING Xilun, YU Yushu. A multi-propeller and multi-function aero-robot and its motion planning of leg wall-climbing[J]. Acta Aeronaut. Astronaut. Sin., 2010, 31 (10):2075-2086(丁希仑, 俞玉树. 一种多旋翼多功能空中机器人及其腿式壁面行走运动规划[J]. 航空学报, 2010, 31(10): 2075-2086)
    [12]
    LIANG Jie, QIN Kaiyu, CHEN Li. Fuzzy neural network sliding mode control for assembled spacecraft after capture target satellite[J]. J. Dynam. Control, 2018, 16(2):180-192(梁捷, 秦开宇, 陈力. 捕获目标卫星后组合体航天器模糊神经网络滑模控制[J]. 动力学与控制学报, 2018, 16(2):180-192)
    [13]
    CHEN Y F, JIN J, WU X Y. Analysis of dynamical behavior of a planetary gear train[C]//Intelligent Robotics and Applications, Lecture Notes in Computer Science. Berlin: Springer, 2008:46-53
    [14]
    REINTSEMAD, LANDZETTELK, HIRZINGER G. DLR's Advanced Telerobotic Concepts and Experiments for On-orbit Servicing[M]. Berlin: Springer-Verlag, 2007: 323-345
    [15]
    LIU Fucai, GAO Jingfang, JIA Xiaojing. Adaptive network control of flexible-joint space manipulator in task space under gravity effect[J]. J. Astronaut., 2015, 36(12):1391-1397(刘福才, 高静方, 贾晓菁. 考虑重力影响的柔性关节空间机械臂任务空间神经网络控制[J]. 宇航学报, 2015, 36(12): 1391-1397)
    [16]
    ULRICH S, SASIADEK J Z. Extended kalman filtering for flexible joint space robot control[C]//Proceedings of the 2011 American Control Conference. San Francisco: IEEE, 2011:1021-1026
    [17]
    PAN Bo, YU Dengyun, SUN Jing. Research on dynamic modeling and analysis of joint in large space manipulator[J]. J. Astronaut., 2010, 22(8):1826-1831(潘博, 于登云, 孙京. 大型空间机械臂关节动力学建模与分析研究[J]. 宇航学报, 2010, 22(8):1826-1831)
    [18]
    XIE Limin, CHEN Li. Fuzzy sliding mode control and vibration on suppression of free-floating flexible-joint space manipulator[J]. Chin. Quart. Mech., 2012, 33(4):635-641(谢立敏, 陈力. 漂浮基柔性关节空间机械臂模糊滑模控制及振动抑制[J]. 力学季刊, 2012, 33(4):635-641)
    [19]
    LIANG Jie, CHEN Li, LIANG Pin. Adaptive fuzzy global sliding mode control and active hierarchical vibration suppression of space robot with flexible-link and flexible-joint[J]. J. Vibration Shock, 2016, 35(18):62-70(梁捷, 陈力, 梁频. 柔性空间机器人基于关节柔性补偿控控制器与虚拟力概念的模糊全局滑模控制及振动主动抑制[J]. 振动与冲击, 2016, 35(18):62-70)
    [20]
    STIEBER M E, TRUDE1 C P, HUNTER D G. Robotic syatems for the international space station[C]//Proceedings of the 1997 IEEE International Conference on Robotics and Automation. Albuquerque: IEEE, 1997: 3068-3073
    [21]
    SPONG M W. Modeling and control of elastic joint robots[J]. J. Dynam. Syst. Meas., Control, 1987, 109:310-319
    [22]
    LIANG Jie, CHEN Li. Fuzzy neural network control for a space-based robot with constrained actuators[J]. Eng. Mech., 2014, 31(11):190-197(梁捷, 陈力. 执行器受限空间机器人的模糊神经网络控制[J]. 工程力学, 2014, 31(11):190-197)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(190) PDF Downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return