Volume 41 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
RUAN Yao, TIAN Tian, JIANG Yingying, QIN Tao, CHU Xinyi, ZHANG Hongyu. Molecular Simulation Research on Metabolic Origin and Evolution[J]. Journal of Space Science, 2021, 41(1): 158-166. doi: 10.11728/cjss2021.01.158
Citation: RUAN Yao, TIAN Tian, JIANG Yingying, QIN Tao, CHU Xinyi, ZHANG Hongyu. Molecular Simulation Research on Metabolic Origin and Evolution[J]. Journal of Space Science, 2021, 41(1): 158-166. doi: 10.11728/cjss2021.01.158

Molecular Simulation Research on Metabolic Origin and Evolution

doi: 10.11728/cjss2021.01.158
  • Received Date: 2020-11-06
  • Publish Date: 2021-01-15
  • Metabolism provides the material and energy basis for life and played important roles in the origin and evolution of life. However, due to the lack of fossil evidence, significant issues such as the origin of metabolism and the molecular mechanisms of metabolism affecting evolution have yet to be resolved. In recent years, the emergence of molecular simulation methods such as network expansion algorithms provides new solutions to the above issues. This article will review recent molecular simulation studies on the origin and evolution of metabolism, with a view to providing new ideas for research in related fields.


  • loading
  • [1]
    KAUFFMAN S A. The Origins of Order:Self-Organization andSelection in Evolution[M]. Oxford:Oxford University Press, 1993
    WÄCHTERSHÄUSER G. The origin of life and its methodologicalchallenge[J]. J. Theor. Biol., 1997, 187 (4):483-494
    KAUFFMAN S A. Investigations[M]. Oxford:Oxford UniversityPress, 2000
    LANIER K A, WILLIAMS L D. The origin of life:models anddata[J]. J. Mol. Evol., 2017, 84(2-3):85-92
    KNOLL A H, CARROLL S B. Early animal evolution:emerging viewsfrom comparative biology and geology[J]. Science, 1999,284(5423):2129-2137
    FALKOWSKI P G, ISOZAKI Y. The story of O[J]. Science, 2008, 322:540-542
    SCHWARTZ A W. Phosphorus in prebiotic chemistry[J].Philosoph. Trans. Royal Soc. B:Biol. Sci., 2006,361 (1474):1743-1749
    KRISHNAMURTHY R, HUD N V. Introduction:chemical evolution andthe origins of life[J]. Chem. Rev., 2020, 120(11):4613-4615
    KANEHISA M, GOTO S. Kegg:Kyoto encyclopedia of genes andgenomes[J]. Nucl. Acids Res., 2000, 28(1):27-30
    KANEHISA M, SATO Y, FURUMICHI M, et al. New approach forunderstanding genome variations in kegg[J]. Nucleic Acids Res.,2019, 47(D1):D590-D595
    EBENHÖH O, HANDORF T, HEINRICH R. Structural analysis ofexpanding metabolic networks[J]. Genome Inform., 2004,15(1):35-45
    GOLDFORD J E, HARTMAN H, SMITH T F, et al. Remnants of anancient metabolism without phosphate[J]. Cell, 2017,168(6):1126-1134
    NITSCHKE W, MCGLYNN S E, MILNER-WHITE E J, et al. On theantiquity of metalloenzymes and their substrates in bioenergetics[J].Biochim. Biophys. Acta:Bioenerg., 2013, 1827(8-9):871-881
    TIAN T, CHU X Y, YANG Y, et al. Phosphates as energysources to expand metabolic networks[J]. Life, 2019,9(2):43
    DE ZWART I I, MEADE S J, PRATT A J. Biomimetic phosphoryltransfer catalysed by iron (ii)-mineral precipitates[J]. Geochim.Cosmochim. Acta, 2004, 68(20):4093-4098
    HOLM N G, DUMONT M, IVARSSON M, et al. Alkaline fluidcirculation in ultramafic rocks and formation of nucleotide constituents:a hypothesis[J]. Geochem. Trans., 2006, 7(1):1-7
    DE SOUZA-BARROS F, VIEYRA A. Mineral interface in extremehabitats:a niche for primitive molecular evolution for the appearance ofdifferent forms of life on earth[J]. Comp. Biochem. Physiol.Part C:Toxicol. Pharmacol., 2007, 146(1/2):10-21
    MARTIN W, RUSSELL M J. On the origin of biochemistry at analkaline hydrothermal vent[J]. Philosoph. Trans. Royal Soc. B:Biol. Sci., 2007, 362(1486):1887-1926
    ZABINSKI R F, TONEY M D. Metal ion inhibition of nonenzymaticpyridoxal phosphate catalyzed decarboxylation and transamination[J].J. Am. Chem. Soc., 2001, 123(2):193-198
    NELSON D L, LEHNINGER A L, COX M M. Lehninger Principles ofBiochemistry[M]. New York:Macmillan, 2008
    MAHEEN G, WANG Y, WANG Y, et al. Mimicking the prebioticacidic hydrothermal environment:One-pot prebiotic hydrothermal synthesisof glucose phosphates[J]. Heteroatom Chem., 2011,22(2):186-191
    KELLER M A, TURCHYN A V, RALSER M. Non-enzymatic glycolysis andpentose phosphate pathway-like reactions in a plausible a rchean ocean[J].Mol. Syst. Biol., 2014, 10(4):725
    COGGINS A J, POWNER M W. Prebiotic synthesis of phosphoenolpyruvate by α-phosphorylation-controlled triose glycolysis[J].Nature Chemistry, 2017, 9(4):310
    PASCAL R, POITEVIN F, BOITEAU L. Energy sources for prebioticchemistry and early life:Constraints and availability[C]//Proceedings ofthe Origins of Life and Evolution of Biospheres. Netherlands:Springer, 2009:260-261
    ANBAR A D, DUAN Y, LYONS T W, et al. A whiff of oxygenbefore the great oxidation event?[J]. Science, 2007,317(5846):1903-1906
    KATO Y, SUZUKI K, NAKAMURA K, et al. Hematite formation byoxygenated groundwater more than 2.76 billion years ago[J]. EarthPlanet. Sci. Lett., 2009, 278(1/2):40-49
    HOASHI M, BEVACQUA D C, OTAKE T, et al. Primary haematiteformation in an oxygenated sea 3.46 billion years ago[J]. Nat.Geosci., 2009, 2(4):301-306
    BAUDOUIN-CORNU P, THOMAS D. Oxygen at life's boundaries[J].Nature, 2007, 445(7123):35-36
    HOLLAND H. Early life on earth[C]//Proceedings of the NobelSymposium. New York:Columbia University Press, 1994:237-244
    RAYMOND J, BLANKENSHIP R E. Biosynthetic pathways, genereplacement and the antiquity of life[J]. Geobiology, 2004,2(4):199-203
    CATLING D C, GLEIN C R, ZAHNLE K J, et al. Why O2 isrequired by complex life on habitable planets and the concept of planetary"oxygenation time"[J]. Astrobiology, 2005, 5(3):415-438
    HEDGES S B, CHEN H, KUMAR S, et al. A genomic timescalefor the origin of eukaryotes[J]. BMC Evol. Biol., 2001,1(1):1-10
    BROCKS J J, LOGAN G A, BUICK R, et al. Archean molecularfossils and the early rise of eukaryotes[J]. Science, 1999,285(5430):1033-1036
    FALKOWSKI P G, KATZ M E, MILLIGAN A J, et al. The rise ofoxygen over the past 205 million years and the evolution of large placentalmammals[J]. Science, 2005, 309(5744):2202-2204
    RAYMOND J, SEGRÉ D. The effect of oxygen on biochemicalnetworks and the evolution of complex life[J]. Science, 2006,311(5768):1764-1767
    SUMMONS R E, BRADLEY A S, JAHNKE L L, et al. Steroids,triterpenoids and molecular oxygen[J]. Philosoph. Trans. Royal Soc.B:Biol. Sci., 2006, 361 (1470):951-968
    CHEN L L, WANG G Z, ZHANG H Y. Sterol biosynthesis andprokaryotes-to-eukaryotes evolution[J]. Biochem. Biophys. Res.Commun., 2007, 363(4):885-888
    JIANG Y Y, KONG D X, QIN T, et al. How does oxygen risedrive evolution——Clues from oxygen-dependent biosynthesis of nuclearreceptor ligands[J]. Biochem. Biophys. Res. Commun., 2010,391(2):1158-1160
    KONG D X, GUO M Y, XIAO Z H, et al. Historical variationof structural novelty in a natural product library[J]. Chem.Biodivers., 2011, 8(11):1968-1977
    JIANG Y Y, KONG D X, QIN T, et al. The impact of oxygenon metabolic evolution:a chemoinformatic investigation[J]. PLoSComput. Biol., 2012, 8(3):e1002426
    CAETANO-ANOLLÉS G, WANG M, CAETANO-ANOLLÉS D, et al.The origin, evolution and structure of the protein world[J].Biochem. J., 2009, 417(3):621-637
    MA B G, CHEN L, JI H F, et al. Characters of very ancientproteins[J]. Biochem. Biophys. Res. Commun., 2008,366(3):607-611
    CAETANO-ANOLLÉS G, YAFREMAVA L S, GEE H, et al. Theorigin and evolution of modern metabolism[J]. Int. J. Biochem. CellBiol., 2009, 41(2):285-297
    ANDREEVA A, HOWORTH D, CHANDONIA J M, et al. Data growthand its impact on the scop database:new developments[J]. Nucl.Acids Res., 2007, 36(1):D419-D425
    WINSTANLEY H F, ABELN S, DEANE C M. How old is your fold[J].Bioinformatics, 2005, 21(1):449-458
    ABELN S, DEANE C M. Fold usage on genomes and protein foldevolution[J]. Proteins:Struct., Funct., Bioinform., 2005,60(4):690-700
    CAETANO ANOLLÉS G, CAETANO ANOLLÉS D. An evolutionarilystructured universe of protein architecture[J]. Genome Res.,2003, 13(7):1563-1571
    CAETANO ANOLLES G, CAETANO ANOLLES D. Universal sharing patternsin proteomes and evolution of protein fold architecture and life[J].J. Mol. Evol., 2005, 60(4):484-498
    WANG M, BOCA S M, KALELKAR R, et al. A phylogenomicreconstruction of the protein world based on a genomic census of proteinfold architecture[J]. Complexity, 2006, 12(1):27-40
    WANG M, JIANG Y Y, KIM K M, et al. A universal molecularclock of protein folds and its power in tracing the early history ofaerobic metabolism and planet oxygenation[J]. Mol. Biol. Evol.,2011, 28(1):567-582
    SESSIONS A L, DOUGHTY D M, WELANDER P V, et al. Thecontinuing puzzle of the great oxidation event[J]. Curr. Biol.,2009, 19(14):R567-R574
    HART S, SCHLARB-RIDLEY B, BENDALL D, et al. Terminaloxidases of cyanobacteria[J]. Biochem. Soc. Trans., 2005, 33(4):832-835
    KIM K M, QIN T, JIANG Y Y, et al. Protein domain structureuncovers the origin of aerobic metabolism and the rise of planetaryoxygen[J]. Structure, 2012, 20(1):67-76
    JI H F, CHEN L, ZHANG H Y. Organic cofactors participated morefrequently than transition metals in redox reactions of primitiveproteins[J]. Bioessays, 2008, 30(8):766-771
    ZHU G, GOLDING G B, DEAN A M. The selective cause of an ancientadaptation[J]. Science, 2005, 307(5713):1279-1282
    BENNER S A, RICARDO A. Planetary systems biology[J]. Mol.Cell, 2005, 17(4):471-472
    ALCOTT L J, MILLS B J, POULTON S W. Stepwise earth oxygenationis an inherent property of global biogeochemical cycling[J].Science, 2019, 366(6471):1333-1337
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(289) PDF Downloads(76) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint