Volume 41 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
LIN Jun, HUANG Shanjie, LI Yan, CHONG Xiaoyu, ZHANG Shenyi, LI Mingtao, ZHANG Yiteng, ZHOU Bin, OUYANG Gaoxiang, XIANG Lei, DONG Liang, JI Haisheng, TIAN Hui, SONG Hongqiang, LIU Yu, JIN Zhenyu, FENG Jing, ZHANG Hongbo, ZHANG Xianguo, ZHANG Weijie, HUANG Min, LÜ Qunbo, DENG Lei, FU Huishan, CHENG Xin, WANG Min. In Situ Detection of the Solar Eruption: Lay a Finger on the Sunormalsize[J]. Chinese Journal of Space Science, 2021, 41(2): 183-210. doi: 10.11728/cjss2021.02.183
Citation: LIN Jun, HUANG Shanjie, LI Yan, CHONG Xiaoyu, ZHANG Shenyi, LI Mingtao, ZHANG Yiteng, ZHOU Bin, OUYANG Gaoxiang, XIANG Lei, DONG Liang, JI Haisheng, TIAN Hui, SONG Hongqiang, LIU Yu, JIN Zhenyu, FENG Jing, ZHANG Hongbo, ZHANG Xianguo, ZHANG Weijie, HUANG Min, LÜ Qunbo, DENG Lei, FU Huishan, CHENG Xin, WANG Min. In Situ Detection of the Solar Eruption: Lay a Finger on the Sunormalsize[J]. Chinese Journal of Space Science, 2021, 41(2): 183-210. doi: 10.11728/cjss2021.02.183

In Situ Detection of the Solar Eruption: Lay a Finger on the Sunormalsize

doi: 10.11728/cjss2021.02.183
  • Received Date: 2021-02-12
  • Rev Recd Date: 2021-02-25
  • Publish Date: 2021-03-15
  • This paper is to introduce a proposed deep space mission, which aims to perform in situ detection of the central structure, namely the magnetic reconnection current sheet, which drives the large scale eruption on a star. The main focus of this mission is on the fine physical characteristics of the large scale magnetic reconnection taking place on the Sun, our nearest star, revealing the secret of the most violent energy release process, also known as the solar storm, in the solar system. The scientific goal of this mission, magnetic reconnection, is a kernel process of energy conversion occurring in the magnetized plasma in the universe, and has long been a fairly important research topic or even research area in solar physics, space science, plasma physics, and the related fields. In situ detection enhances the spatial resolution of the instruments used on the Earth 5~20 times, will provide us extra-clear images of the Sun and the related information. We are thus able to study, to learn, and to understand the Sun on an unprecedented platform, and further resolve the long-standing puzzle in the solar community regarding the fine physical property of the kernel process driving the solar eruption, as well as that of the corona heating.

     

  • loading
  • [1]
    LIN J, SOON W, BALIUNAS S. The eruptive process in the solar atmosphere and the related theories[J]. Chin. Sci. Bull., 2002, 47(21):1601-1612(林隽, SOON W, BALIUNAS S. 太阳大气中的爆发过程及其理论[J]. 科学通报, 2002, 47(21):1601-1612)
    [2]
    LIN J, SOON W, BALIUNAS S L. Theories of solar eruptions:a review[J]. New Astron. Rev., 2003, 47(2):53-84
    [3]
    FANG C. Space weather comes into our life[J]. Chin. J. Nat., 2006, 28(4):194-198
    [4]
    REAMES D V. Solar energetic particles lecture notes in physics[J]. Springer Int. Publ. AG, 2017, 932:DOI:10. 1007/978-3-319-50871-9_5
    [5]
    YUAN F, LIN J, WU K, et al. A magnetohydrodynamical model for the formation of episodic jets[J]. Mon. Not. Royal Astron. Soc., 2009, 395:2183-2188
    [6]
    MENG Y, LIN J, ZHANG L, et al. An MHD model for magnetar giant flares[J]. Astrophys. J., 2014, 785:62
    [7]
    PRIEST E R. MHD of the Sun[M]. Cambridge UK:Cambridge University Press, 2014
    [8]
    PRIEST E R, FORBES G. Magnetic Reconnection[M]. Cambridge UK:Cambridge University Press, 2000
    [9]
    LIN J, WANG M, TIAN H, et al. In situ measurements of the solar eruption[J]. Sci. Sin-Phys. Mech. Astron., 2019, 49(5):059607
    [10]
    LIN J, FORBES T G. Effects of reconnection on the coronal mass ejection process[J]. J. Geophys. Res., 2000, 105:2375-2392
    [11]
    LIN J. Energetics and propagation of coronal mass ejections in different plasma environments[J]. Chin. J. Astron. Astrophys., 2002, 2:539-556
    [12]
    CIARAVELLA A, RAYMOND J C, LIN J, et al. Elemental abundances and post-coronal mass ejection current sheet in a very hot active region[J]. Astrophys. J., 2002, 575:1116-1130
    [13]
    WEBB D F, BURKEPILE J, FORBES T G, et al. Observational evidence of new current sheets trailing coronal mass ejections[J]. J. Geophys. Res., 2003, 108(A12):1440
    [14]
    KO Y K, RAYMOND J C, LIN J, et al. Dynamical and physical properties of a post-coronal mass ejection current sheet[J]. Astrophys. J., 2003, 594:1068-1084
    [15]
    LIN J, KO Y K, SUI L, et al. Direct observations of the magnetic reconnection site of an eruption on 2003 November 18[J]. Astrophys. J., 2005, 622:1251-1264
    [16]
    LIN J, LI J, FORBES T G, et al. Features and properties of coronal mass ejection/flare current sheets[J]. Astrophys. J., 2007, 658:123-126
    [17]
    LIN J, LI J, KO Y K, et al. Investigation of thickness and electrical resistivity of the current sheets in solar eruptions[J]. Astrophys. J., 2009, 693:1666-1677
    [18]
    LIN J, MURPHY N A, SHEN C C, et al. Review on current sheets in CME development:theories and observations[J]. Space Sci. Rev., 2015, 194:237-302
    [19]
    LIN J, NI L. Large-scale current sheets in flares and CMEs[J]. Geophys. Monograph Ser., 2018, 235:239-255
    [20]
    WANG S M, WANG R S, LU Q M, et al. Direct evidence of secondary reconnection inside filamentary currents of magnetic flux ropes during magnetic reconnection[J]. Nat. Comm., 2020, 11:3964
    [21]
    SHEN C C, LIN J, MUROHY N A, et al. Statistical and spectral properties of magnetic islands in reconnecting current sheets during two-ribbon flares[J]. Phys. Plasma, 2013, 20:072114
    [22]
    NI L, LIN J, MEI Z X, et al. Numerical experiments on the detailed energy conversion and spectrum studies in a corona current sheet[J]. Astrophys. J., 2015, 812:92
    [23]
    NI L, LIN J, ROUSSEV I I, et al. Heating mechanisms in the low solar atmosphere through magnetic reconnection in current sheets[J]. Astrophys. J., 2016, 832:195
    [24]
    NI L, JI H T, MURPHY N A, et al. Magnetic reconnection in partially ionized plasmas[J]. Proceed. Royal Soc. A, 2020, 476:20190687
    [25]
    FORBES T G, LIN J. What can we learn about reconnection from coronal mass ejections[J]. J. Atmos. Sol. Terr. Phys., 2000, 62:1499-1507
    [26]
    WEBB D F, VOURLIDAS A. LASCO white-Light observations of eruptive current sheets trailing CMEs[J]. Sol. Phys., 2016, 291(12):3725-3749
    [27]
    SHEN C C, LIN J, MURPHY N A. Numerical experiments on fine structure within reconnecting current sheets in solar flares[J]. Astrophys. J., 2011, 737(1):14
    [28]
    MEI Z X, SHEN C C, WU N, et al. Numerical experiments on magnetic reconnection in solar flare and coronal mass ejection current sheets[J]. Mon. Not. Royal Astron. Soc., 2012, 425:2824-2839
    [29]
    MEI Z X, KEPPENS R, ROUSSEV I I, et al. Magnetic reconnection during eruptive magnetic flux ropes[J]. Astron. Astrophys., 2017, 604:7
    [30]
    MEI Z X, KEPPENS R, ROUSSEV I I, et al. Parametric study on kink instabilities of twisted magnetic flux ropes in the solar atmosphere[J]. Astron. Astrophys., 2017, 609:A2
    [31]
    毅, 张贤国, 王春琴, 等. 风云三号卫星空间高能质子探测器的几何因子计算[J]. 中国科学:地球科学, 2014, 57:2479-2486)
    [31]
    SHEN C C, KONG X L, GUO F, et al. The dynamical behavior of reconnection-driven termination shocks in solar flares:magnetohydrodynamic simulations[J]. Astrophys. J., 2018, 869(2):116
    [32]
    YE J, SHEN C C, RAYMOND J C, et al. Numerical study of the cascading energy conversion of the reconnection current sheet in solar eruptions[J]. Mon. Not. Royal Astron. Soc., 2019, 482:588
    [33]
    YE J, CAI Q W, SHEN C C, et al. The role of turbulence for heating plasmas in eruptive solar flares[J]. Astrophys. J., 2020, 897:64
    [34]
    FURTH H P. Prevalent instability of nonthermal plasmas[J]. Phys. Fluids, 1963, 6:48-57
    [35]
    LOUREIRO N F, SCHEKOCHIHINA A, COWLEY S C. Instability of current sheets and formation of plasmoid chains[J]. Phys. Plasma, 2007, 14:100703
    [36]
    NI L, GERMASCHEWSKI K, HUANG Y M, et al. Linear plasmoid instability of thin current sheets with shear flow[J]. Phys. Plasmas, 2010, 17:052109
    [37]
    NI L, ZIEGLER U, HUANG Y M, et al. Effects of plasma β on the plasmoid instability[J]. Phys. Plasmas, 2012, 19:072902
    [38]
    NI L, LIN J, MURPHHY N A, et al. Effects of the non-uniform initial environment and the guide field on the plasmoid instability[J]. Phys. Plasmas, 2013, 20:061206
    [39]
    NI L, LUKIN V, MURPHY N A, et al. Magnetic reconnection in strongly magnetized regions of the low solar chromosphere[J]. Astrophys. J., 2018, 852:95
    [40]
    SAVAGE S L, MCKENZIE D E, REEVES K K, et al. Reconnection outflows and current sheet observed with Hinode/XRT in the 2008 April 9"Cartwheel CME" flare[J]. Astrophys. J., 2010, 722:329
    [41]
    FORBES T G, SEATON D B, REEVES K K. Reconnection in the post-impulsive phase of solar flares[J]. Astrophys. J., 2018, 858:70
    [42]
    LEE J K, CHO K S, LEE K S, et al. Formation of post-CME blobs observed by LASCO-C2 and K-Cor on 2017 September 10[J]. Astrophys. J., 2020, 892:129
    [43]
    LI Y, LIN J. Acceleration of electrons and protons in reconnecting current sheets including single or multiple X-points[J]. Sol. Phys., 2012, 279(1):91-113
    [44]
    LI Y, WINTER H D, MURPHY N A, et al. The dependence of particle acceleration on initial locations in reconnecting current sheets[J]. Publ. Astron. Soc. Japan, 2013, 65:101
    [45]
    LI Y, WU N, LIN J. Charged-particle acceleration in a reconnecting current sheet including multiple magnetic islands and a nonuniform background magnetic field[J]. Astron. Astrophys., 2017, 605:120
    [46]
    GAN W Q, YAN Y H, HUANG Y. Prospect for space solar physics in 2016-2030[J]. Sci. Sin-Phys. Mech. Astron., 2019, 49(5):059602
    [47]
    FOX N J, VELLI M C, BALE S D, et al. The solar probe plus mission:humanity's first visit to our star[J]. Space Sci. Rev., 2016, 204:7-48
    [48]
    MCCOMAS D J, CHRISTIAN E R, COHEN C M S, et al. Probing the energetic particle environment near the sun[J]. Nature, 2019, 576:223-227
    [49]
    KASPER J C, BALE S D, BELCHER J W, et al. Alfvénic velocity spikes and rotational flows in the near-Sun solar wind[J]. Nature, 2019, 576:228-231
    [50]
    HOWARD R A, VOURLIDAS A, BOTHMER V, et al. Near-Sun observations of an F-corona decrease and K-corona fine structure[J]. Nature, 2019, 576:232-236
    [51]
    BALE S D, BADMAN S T, BONNELL J W, et al. Highly structured slow solar wind emerging from an equatorial coronal hole[J]. Nature, 2019, 576:237-242
    [52]
    HOWARD R A, VOURLIDAS A, COLANINNO R C, et al. The solar orbiter heliospheric imager (SoloHI)[J]. Astron. Astrophys., 2020, 642:13
    [53]
    BÁRTA M, BÜCHNER J, KARLIK'Y M, et al. Spontaneous current-layer fragmentation and cascading reconnection in solar flares. I. Model and analysis[J]. Astrophys. J., 2011, 737(1):24
    [54]
    MANN G, KLASSEN A, AURASS H, et al. Formation and development of shock waves in the solar corona and the near-Sun interplanetary space[J]. Astron. Astrophys., 2003, 400:329
    [55]
    ZLOTNIK E Y, KLASSEN A, KLEIN K L, et al. Third harmonic plasma emission in solar type II radio bursts[J]. Astron. Astrophys., 1998, 331(3):1087-1098
    [56]
    CANE H V. Two components in major solar particle events[J]. Geophys. Res. Lett., 2003, 30(12):8017
    [57]
    LI G, ZANK G P. Mixed particle acceleration at CME-driven shocks and flares[J]. Geophys. Res. Lett., 2005, 32:02101
    [58]
    MA S L, RAYMOND J C, GOLUB L, et al. Observations and interpretation of a low coronal shock wave observed in the EUV by the SDO/AIA[J]. Astrophys. J., 2011, 738:160
    [59]
    KOHL J L, GIANCARLO N, STEVEN R C, et al. Ultraviolet spectroscopy of the extended solar corona[J]. Astron. Astrophys. Rev., 2006, 13:31
    [60]
    MANCUSO S, RAYMOND J C, KOHL J, et al. UVCS/SOHO observations of a CME-driven shock:Consequences on ion heating mechanisms behind a coronal shock[J]. Astron. Astrophys., 2002, 383:267-274
    [61]
    BEMPORAD A, MANCUSO S. First complete determination of plasma physical parameters across a coronal mass ejection-driven shock[J]. Astrophys. J., 2010, 720:130-143
    [62]
    WANG H J, SHEN C C, LIN J. Numerical experiments of wave-like phenomena caused by the disruption of an unstable magnetic configuration[J]. Astrophys. J., 2009, 700:1716
    [63]
    WANG H J, LIU S Q, GONG J C, et al. Contribution of velocity vortices and fast shock reflection and refraction to the formation of EUV waves in solar eruptions[J]. Astrophys. J., 2015, 805:114
    [64]
    PARKER E N. Nanoflares and the solar X-ray corona[J]. Astrophys. J., 1988, 330:474-479
    [65]
    RAPPAZZO A F, VELLI M, EINAUDI G, et al. Nonlinear dynamics of the Parker scenario for coronal heating[J]. Astrophys. J., 2008, 677:1348-1366
    [66]
    BRADSHAW S J, KLIMCHUK J A. Chromospheric nanoflares as a source of coronal plasma. II. repeating nanoflares[J]. Astrophys. J., 2015, 811:129
    [67]
    CRANMER S R, VAN BALLEGOOIJEN A A, EDGAR R J. Self-consistent coronal heating and solar wind acceleration from anisotropic magnetohydrodynamic turbulence[J]. Astrophys. J. Suppl. Ser., 2007, 171:520-551
    [68]
    ASGARI-TARGHI M, VAN BALLEGOOIJEN A A, CRANMER S R, et al. The spatial and temporal dependence of coronal heating by Alfvén wave turbulence[J]. Astrophys. J., 2013, 773:111
    [69]
    VAN BALLEGOOIJEN A A, ASGARI-TARGHI M, VOSS A. The heating of solar coronal loops by Alfvén wave turbulence[J]. Astrophys. J., 2017, 849:46
    [70]
    CIRTAIN J W, GOLUB L, WINGEBARGER A, et al. Energy release in the solar corona from spatially resolved magnetic braids[J]. Nature, 2013, 493:501-503
    [71]
    TESTA P, DE PONTIEU B, ALLRED J, et al. Evidence of nonthermal particles in coronal loops heated impulsively by nanoflares[J]. Science, 2014, 346:1255724
    [72]
    TIAN H, LI G, REEVES K K, et al. Imaging and spectroscopic observations of magnetic reconnection and chromospheric evaporation in a solar flare[J]. Astrophys. J. Lett., 2014, 797(2):14
    [73]
    QIU J, WANG H M, CHENG C Z, et al. Magnetic reconnection and mass acceleration in flare-coronal mass ejection events[J]. Astrophys. J., 2004, 604(2):900
    [74]
    YANG Z H, BETHGE C, TIAN H, et al. Global maps of the magnetic field in the solar corona[J]. Science, 2020, 369:694-697
    [75]
    FARRELL W M, THOMPSON R F, LEPPING R P, et al. A method of calibrating magnetometers on a spinning spacecraft[J]. IEEE T rans. Magn., 1995, 31(2):966-972
    [76]
    ZHANG S Y, ZHANG X G, WANG C Q, et al. The geometric factor of high energy protons detector on FY-3 satellite[J]. Sci. China:Earth Sci., 2014, 57:2558-2566(张#
    [77]
    MANN I, KIMURA H, BIESECKER D A, et al. Dust near the sun[J]. Space Sci. Rev., 2004, 110:269
    [78]
    RAYMOND J C, FINESCHI S, SMITH P L, et al. Solar wind at 6.8 solar radii from UVCS observation of comet C/1996Y1[J]. Astrophys. J., 1998, 508:410
    [79]
    MIZUTANI K, MAIHARA T, HIROMOTO N, et al. Near-infrared observation of the circumsolar dust emission during the 1983 solar eclipse[J]. Nature, 1984, 312(5990):134-136
    [80]
    BEMPORAD A, POLETTO G, RAYMOND J, et al. UVCS observation of sungrazer C/2001 C2:possible comet fragmentation and plasma-dust interactions[J]. Astrophys. J., 2005, 620(1):523-536
    [81]
    BEMPORAD A, GIORDANO S, RAYMOND J C, et al. Study of sungrazing comets with space-based coronagraphs:new possibilities offered by METIS on board Solar Orbiter[J]. Adv. Space Res., 2015, 56(10):2288-2297
    [82]
    BEMPORAD A, POLETTO G, RAYMOND J, et al. A review of SOHO/UVCS observations of sungrazing comets[J]. Planet. Space Sci., 2007, 55(9):1021-1030
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(836) PDF Downloads(155) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return