Volume 41 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
KUDRIASHOV V, MARTIN-NEIRA M, ROELOFS F, FALCKE H, BRINKERINK C, BARYSHEV A, HOGERHEIJDE M, YOUNG A, POURSHAGHAGHI H, KLEIN-WOLT M, MOSCIBRODZKA M, DAVELAAR J, BARAT I, DUESMANN B, VALENTA V, PERDIGUES ARMENGOL J M, DE WILDE D, MARTIN IGLESIAS P, ALAGHA N, VAN DER VORST M. An Event Horizon Imager (EHI) Mission Concept Utilizing Medium Earth Orbit Sub-mm Interferometry[J]. Journal of Space Science, 2021, 41(2): 211-233. doi: 10.11728/cjss2021.02.211
Citation: KUDRIASHOV V, MARTIN-NEIRA M, ROELOFS F, FALCKE H, BRINKERINK C, BARYSHEV A, HOGERHEIJDE M, YOUNG A, POURSHAGHAGHI H, KLEIN-WOLT M, MOSCIBRODZKA M, DAVELAAR J, BARAT I, DUESMANN B, VALENTA V, PERDIGUES ARMENGOL J M, DE WILDE D, MARTIN IGLESIAS P, ALAGHA N, VAN DER VORST M. An Event Horizon Imager (EHI) Mission Concept Utilizing Medium Earth Orbit Sub-mm Interferometry[J]. Journal of Space Science, 2021, 41(2): 211-233. doi: 10.11728/cjss2021.02.211

An Event Horizon Imager (EHI) Mission Concept Utilizing Medium Earth Orbit Sub-mm Interferometry

doi: 10.11728/cjss2021.02.211
Funds:

The research work reported in the paper was partly supported by the Project NPI-552 “Space-to-space Interferometer System to Image the Event Horizon of the Super Massive Black Hole in the Center of Our Galaxy” co-funded by the European Space Agency (ESA) and the Radboud University of Nijmegen (ESA contract 4000122812), and by the NWO project PIPP “Breakthrough Technologies for Interferometry in Space”.

More Information
  • Author Bio:

    Kudriashov V,E-mail:V.Kudriashov@astro.ru.nl

  • Received Date: 2020-08-20
  • Rev Recd Date: 2021-01-29
  • Publish Date: 2021-03-15
  • Submillimeter interferometry has the potential to image supermassive black holes on event horizon scales, providing tests of the theory of general relativity and increasing our understanding of black hole accretion processes. The Event Horizon Telescope (EHT) performs these observations from the ground, and its main imaging targets are Sagittarius A* in the Galactic Center and the black hole at the center of the M87 galaxy. However, the EHT is fundamentally limited in its performance by atmospheric effects and sparse terrestrial (u,v)-coverage (Fourier sampling of the image). The scientific interest in quantitative studies of the horizon size and shape of these black holes has motivated studies into using space interferometry which is free of these limitations. Angular resolution considerations and interstellar scattering effects push the desired observing frequency to bands above 500 GHz.
    This paper presents the requirements for meeting these science goals, describes the concept of interferometry from Polar or Equatorial Medium Earth Orbits (PECMEO) which we dub the Event Horizon Imager (EHI), and utilizes suitable space technology heritage. In this concept, two or three satellites orbit at slightly different orbital radii, resulting in a dense and uniform spiral-shaped (u,v)-coverage over time. The local oscillator signals are shared via an inter-satellite link, and the data streams are correlated on-board before final processing on the ground. Inter-satellite metrology and satellite positioning are extensively employed to facilitate the knowledge of the instrument position vector, and its time derivative. The European space heritage usable for both the front ends and the antenna technology of such an instrument is investigated. Current and future sensors for the required inter-satellite metrology are listed. Intended performance estimates and simulation results are given.

     

  • loading
  • [1]
    FALCKE H, MELIA F, AGOL E. Viewing the Shadow of the Black Hole at the Galactic Center[J]. Astrophys. J. Lett., 2000, 528(1):13-16
    [2]
    GODDI C, FALCKE H, KRAMER M, et al. BlackHoleCam:fundamental physics of the galactic center[J]. Int. J. Mod. Phys. D, 2017, 26(2):1730001
    [3]
    MIZUNO Y, YOUNSI Z, FROMM C M, et al. The current ability to test theories of gravity with black hole shadows[J]. Nat. Astron., 2018, 2(7):585-590
    [4]
    PSALTIS D. Testing general relativity with the event horizon telescope[J]. Gen. Relat. Gravit., 2019, 51(10):DOI: 10.1007/s10714-019-2611-5
    [5]
    DO Tuan, HEES Aurelien, GHEZ Andrea, et al. Relativistic redshift of the star S0-2 orbiting the galactic center supermassive black hole[J]. Science, 2019, 365(6454):664-668
    [6]
    ABUTER R, AMORIM A, BAUBOECK M, et al. A geometric distance measurement to the Galactic center black hole with 0.3% uncertainty[J]. Astron. Astrophys., 2019, 625:10
    [7]
    JOHANNSEN T, PSALTIS D, GILLESSEN S, et al. Masses of nearby supermassive black holes with very long baseline interferometry[J]. Astrophys. J., 2012, 758(1):30
    [8]
    Event Horizon Telescope Collaboration. First M87 event horizon telescope results. I. The shadow of the supermassive black hole[J]. Astrophys. J. Lett., 2019, 875(1):1
    [9]
    Event Horizon Telescope Collaboration. First M87 event horizon telescope results. IV. Imaging the central supermassive black hole[J]. Astrophys. J. Lett., 2019, 875(1):4
    [10]
    Event Horizon Telescope Collaboration. First M87 event horizon telescope results. V. Physical origin of the asymmetric ring[J]. Astrophys. J. Lett., 2019, 875(1):5
    [11]
    Event Horizon Telescope Collaboration. First M87 event horizon telescope results. VI. The Shadow and Mass of the Central Black Hole[J]. Astrophys. J. Lett., 2019, 875(1):6
    [12]
    BARDEEN J M. Timelike and Null Geodesics in the Kerr metric[M]//Summer School of Theoretical Physics:Black Holes. Paris:Gordon and Breach, 1973:215-240
    [13]
    TAKAHASHI R. Shapes and positions of black hole shadows in accretion disks and spin parameters of Black Holes[J]. Astrophys. J., 2004, 611(2):996-1004
    [14]
    JOHANNSEN T, PSALTIS D. Testing the no-hair theorem with observations in the Electromagnetic Spectrum. II. Black Hole Images[J]. Astrophys. J., 2010, 718(1):446-454
    [15]
    Event Horizon Telescope Collaboration. First M87 event horizon telescope results. II. Array and instrumentation[J]. Astrophys. J. Lett., 2019, 875(1):2
    [16]
    Event Horizon Telescope Collaboration. First M87 event horizon telescope results. III. Data processing and calibration[J]. Astrophys. J. Lett., 2019, 875(1):3
    [17]
    THOMPSON A R, MORAN J M, SWENSON JR G W. Interferometry and Synthesis in Radio Astronomy[M]. 3rd ed. Switzerland:Springer Cham, 2017
    [18]
    GURVITS L. Radio interferometers larger than Earth:lessons learned and forward look of space VLBI[C]//69th International Astronautical Congress. Bremen:IAC, 2018:IAC-18-A 7.2.8
    [19]
    MURPHY D, PRESTON R, FOMALONT E, et al. iARISE:a Next-Generation Two-Spacecraft Space VLBI Mission Concept[M]//Future Directions in High Resolution Astronomy:the 10th Anniversary of the VLBA. San Francisco:Astronomical Society of the Pacific, 2005:575-577
    [20]
    HONG X, SHEN Z, AN T, et al. The Chinese space Millimeter-wavelength VLBI array——A step toward imaging the most compact astronomical objects[J]. Acta Astronaut., 2014, 102:217-225
    [21]
    ZHANG C, WU X, ZHENG J, et al. Orbit design for twin-spacecraft space VLBI[J]. Chin. J. Space Sci., 2015, 35(4):502-510
    [22]
    BOGGESS N W, MATHER J C, WEISS R, et al. The COBE mission-Its design and performance two years after launch[J]. Astrophys. J., 1992, 397(2):420-429
    [23]
    BENNETT C L, BAY M, HALPERN M, et al. The microwave anisotropy probe mission[J]. Astrophys. J., 2003, 583(1):1-23
    [24]
    TAUBER J A, NORGAARD-NIELSEN H U, ADE P A R, et al. Planck pre-launch status:the optical system[J]. Astron. Astrophys., 2010, 520(A2):DOI: 10.1051/0004-6361/200912911
    [25]
    DE GRAAUW T, HELMICH F, PHILLIPS T, et al. The Herschel-Heterodyne Instrument for the Far-Infrared (HIFI)[J]. Astron. Astrophys., 2010, 518(L6). DOI: 10.1051/0004-6361/201014698
    [26]
    CORBELLA I, TORRES F, DUFFO N, et al. MIRAS calibration and performance:results from the SMOS in-orbit commissioning phase[J]. IEEE Trans. Geosci. Remote Sens., 2011, 49(9):3147-3155
    [27]
    ESA. Precise Relative Positioning in MEO to Support Science Missions[OL].[2021-03-14]. https://navisp.esa.int/project/details/67/show
    [28]
    HAUSCHILDT H, ELIA C, MOELLER H, et al. HydRON:high throughput optical network[C]//Free-Space Laser Communications XXXI (LASE). San Francisco:SPIE, 2019:DOI: 10.1117/12.2511391
    [29]
    FRAUNHOFER IIS. Solutions for DVB-S2X Wideband Transmission[OL].[2021-03-14].https://www.iis.fraunhofer.de/content/dam/iis/en/doc/ks/hfs/Flyer_Solutions%20for%20DVB-S2X%20Wideband%20Transmission.pdf
    [30]
    Radboud RadioLab.Event Horizon Imager[OL].[2021-03-14].2018,https://www.ru.nl/astrophysics/radboud-radio-lab/projects/ehi/
    [31]
    DOELEMAN S, AGOL E, BACKER D, et al. Imaging an event horizon:submm-VLBI of a Super Massive Black Hole[OL]. arXiv:0906.3899v1, 2009
    [32]
    FISH V, ALEF W, ANDERSON J, et al. High-Angular-Resolution and High-Sensitivity Science Enabled by Beamformed ALMA[OL]. arXiv:1309.3519v1, 2013
    [33]
    OLIVARES H, YOUNSI Z, FROMM C M, et al. How to tell an accreting boson star from a black hole[J]. Mon. Not. Royal Astron., 2018, 497(1):521-535
    [34]
    VAN DER GUCHT, DAVELAAR J, HENDRIKS J, et al. Deep Horizon; a machine learning network that recovers accreting black hole parameters[J]. Astron. Astrophys., 2019, 636(A94). DOI: 10.1051/0004-6361/201937014
    [35]
    ROGERS A, MORAN J. Coherence Limits for very-long-baseline interferometry[J]. IEEE Trans. Instrum. Meas., 1981, IM-30(4):283-286
    [36]
    KUDRIASHOV V, MARTIN-NEIRA M, BARAT I, et al. System design for the event horizon imaging experiment using the PECMEO concept[J]. Chin. J. Space Sci., 2019, 39(2):250-266
    [37]
    MARKOFF S, BOWER G C, FALCKE H. How to hide large-scale outflows:size constraints on the jets of Sgr A*[J]. Mon. Not. Royal Astron. Soc., 2007, 379(4):1519-1532
    [38]
    PRIETO M A, FERNÁNDEZ-ONTIVEROS J A, MARKOFF S, et al. The central parsecs of M87:jet emission and an elusive accretion disc[J]. Mon. Not. Royal Astron. Soc., 2016, 457(4):3801-3816
    [39]
    MOŚCIBRODZKA M, FALCKE H, SHIOKAWA H, et al. Observational appearance of inefficient accretion flows and jets in 3D GRMHD simulations:Application to Sagittarius A*[J]. Astron. Astrophys., 2014, 570:A7. DOI: 10.1051/0004-6361/201424358
    [40]
    DAVELAAR J, OLIVARES H, PORTH O, et al. Modeling non-thermal emission from the jet-launching region of M 87 with adaptive mesh refinement[J]. Astron. Astrophys., 2019, 632:A2. DOI: 10.1051/0004-6361/201936150
    [41]
    JOHNSON M D, GWINN C R. Theory and simulations of refractive substructure in resolved scatter-broadened images[J]. Astrophys. J., 2015, 805(2):180
    [42]
    JOHNSON M D, NARAYAN R, PSALTIS D, et al. The scattering and intrinsic structure of sagittarius A* at radio wavelengths[J]. Astrophys. J., 2018, 865(2):104
    [43]
    ISSAOUN S, JOHNSON M D, BLACKBURN L, et al. The size, shape, and scattering of sagittarius A* at 86,GHz:First VLBI with ALMA[J]. Astrophys. J., 2019, 871(1):30
    [44]
    ISSAOUN S, JOHNSON M D, BLACKBURN L, et al. The size, shape, and scattering of sagittarius A* at 86 GHz:First VLBI with ALMA[J]. Astrophys. J., 2019, 871(1):30
    [45]
    BOWER G C, GOSS W M, FALCKE H, et al. The intrinsic size of sagittarius A* from 0.35 to 6 cm[J]. Astrophys. J. Lett., 2006, 648(2):127-130
    [46]
    ROELOFS F, FALCKE H, BRINKERINK C, et al. Simulations of imaging the event horizon of Sagittarius A* from space[J]. Astron. Astrophys., 2019, 625(A124). DOI:10. 1051/0004-6361/201732423
    [47]
    HOGERHEIJDE M R, BERGIN E A, BRINCH C, et al. Detection of the water reservoir in a forming planetary system[J]. Science, 2011, 334:338-340
    [48]
    LU R, ROELOFS F, FISH V L, et al. Imaging an event horizon:mitigation of source variability of Sagittarius A*[J]. Astrophys. J., 2016, 817(2):173
    [49]
    MARTIN-NEIRA M, KUDRIASHOV V, BARAT I, et al. Space-borne radio telescope to image the event horizon of the super massive black hole at our galactic centre[C]//38th ESA Antenna Workshop on Innovative Antenna Systems and Technologies for Future Space Missions. Noordwijk:The Netherlands, 2017:1-5
    [50]
    MARTIN-NEIRA M, KUDRIASHOV V, BARAT I, et al. Space-to-space connected-element VLBI system from PECMEO orbits[J]. Chin. J. Space Sci., 2019, 39(4):544-552
    [51]
    GURVITS L I, PARAGI Z, CASASOLA V, et al. TeraHertz Exploration and Zooming in for Astrophysics (THEZA), ESA Voyage 2050 White Paper[J]. Astrophysics, 2019, 1-24
    [52]
    ITU. International Telecommunication Union, Radio Regulations Articles[R]. Geneva:ITU, 2016
    [53]
    PALUMBO D, DOELEMAN S, JOHNSON M, et al. Metrics and motivations for earth-space VLBI:time-resolving Sgr A* with the event horizon telescope[J]. ApJ, 2019, 881(1):62. DOI: 10.3847/1538-4357/ab2bed
    [54]
    GRELIER T, GARCIA-RODRÍGUEZ A, PÉRAGIN E, et al. GNSS in space:part 2 formation flying radio frequency techniques and technology[J]. Inside GNSS, 2009, 4(1):43-51
    [55]
    UNWIN M J, BLUNT P, DE VOS VAN STEENWIJK R, et al. GNSS at high altitudes-results from the SGR-GEO on GIOVE-A[C]//9th International ESA Conference on Guidance. Oporto:Navigation and Control Systems, 2014:3305-3315
    [56]
    MARTIN-NEIRA M, KUDRIASHOV V, BARAT I, et al. PECMEO:a new space-to-space connected-element VLBI concept[C]//5th Workshop on Advanced RF Sensors and Remote Sensing Instruments (ARSI). Noordwijk:The Netherlands, 2017:1-6
    [57]
    ERGENZINGER K, SCHULDT T, BERLIOZ, P, et al. Dual absolute and relative high precision laser metrology[C]//International Conference on Space Optics (ICSO). Rhodes:Proceedings of SPIE, 2017. DOI:10. 1117/12.2309252
    [58]
    FERNÁNDEZ J, PETER H, BERZOSA J, et al. First orbit determination results for Sentinel-3B[C]//25 Years of Progress in Radar Altimetry. Ponta Delgada:ESA, CNES, 2018
    [59]
    FERNÁNDEZ J, FERNANDEZ C, CALERO E J, et al. The Copernicus POD Service[C]//IGS Workshop. Paris:ESA, 2017
    [60]
    JENNISON R C. A phase sensitive interferometer technique for the measurement of the fourier transforms of spatial brightness distributions of small angular extent[J]. Mon. Not. Royal Astron. Soc., 1958, 118(3):276-284
    [61]
    GOUJON D, ROCHAT P, MOSSET P, et al. Development of the space active hydrogen maser for the ACES mission[C]//24th European Frequency and Time Forum (EFTF). Noordwijk:The Netherlands, 2010:1-6
    [62]
    BERCEAU P, TAYLOR M, KAHN J, et al. Space-time reference with an optical link[J]. Classical Quant. Grav., 2016, 33(13):135007
    [63]
    BURT E, DIENER W, TJOELKER R. A compensated multi-pole linear ion trap mercury frequency standard for ultra-stable timekeeping[J]. IEEE Trans. UFFC, 2008, 5(12):2586-2595
    [64]
    ANDRIANOV A S, BARYSHEV A M, FALCKE H, et al. Simulations of M87 and Sgr A* imaging with the Millimetron Space Observatory on near-Earth orbits[J]. Mon. Notic. Roy. Astron. Soc., 2020, 500(4):4866-4877. DOI: 10.1093/mnras/staa2709
    [65]
    DOELEMAN S. Seeing the unseeable[J]. Nat. Astron., 2017, 1(10):646
    [66]
    BARYSHEV A, HESPER R, MENA F, et al. The ALMA band 9 receiver. Design, construction, characterization, and first light[J]. Astron. Astrophys., 2015, 577:A129
    [67]
    CHENU J, NAVARRINI A, BORTOLOTTI Y, et al. The front-end of the NOEMA interferometer[J]. IEEE Trans. Terahertz Sci. Technol., 2016, 6(2):223-237
    [68]
    PRIMIANI R A, YOUNG K H, YOUNG A, et al. SWARM:A 32,GHz correlator and VLBI beamformer for the submillimeter array[J]. J. Astron. Instrum., 2016, 5(04):1641006
    [69]
    BLUNDELL R, KIMBERK R, TONG E, et al. A 1.3,mm superconductor insulator superconductor mixer receiver with 40,GHz wide instantaneous bandwidth[C]//International Symposium on Space Terahertz Technology (ISSTT). Gothenburg:Springer US, 2019:40
    [70]
    KOJIMA T, KROUG M, UEMIZU K, et al. Performance of a 275——500,GHz SIS mixer with 3-22,GHz IF[C]//International Symposium on Space Terahertz Technology (ISSTT). Gothenburg:Springer US, 2019:41
    [71]
    LIKHACHEV S F, KOSTENKO V I, GIRIN I A, et al. Software correlator for radioastron mission[J]. J. Astron. Instrum., 2017, 6(3):1750004
    [72]
    BÖHMER K, GREGORY M, HEINE F, et al. Laser communication terminals for the European data relay system[C]//Free-Space Laser Communication Technologies XXIV (LASE). San Francisco:Proceedings of SPIE, 2012
    [73]
    HEINE F, MARTIN-PIMENTEL P, KAEMPFNER H, et al. Alphasat and sentinel 1 A, the first 100 links[C]//IEEE International Conference on Space Optical Systems and Applications (ICSOS). New Orleans:IEEE, 2015:1-4
    [74]
    ZECH H, HEINE F, MOTZIGEMBA M. Laser communication terminals for data relay applications:todays status and future developments[C]//IEEE International Conference on Space Optical Systems and Applications (ICSOS). Okinawa:IEEE, 2017:193-198
    [75]
    MARTIN-NEIRA M, OLIVA R, CORBELLA I, et al. Lessons learnt from SMOS after 7 years in orbit[C]//IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Fort Worth:IEEE, 2017:255-258
    [76]
    ITU. Recommendation ITU-R RS.2064-0. Typical Technical and Operating Characteristics and Frequency Bands Used by Space Research Service (Passive) Planetary Observation Systems[R]. Geneva:International Telecommunication Union, 2014
    [77]
    RODRIGUEZ R, FINGER R, MENA F, et al. Digital compensation of the sideband-rejection ratio in a fully analog 2SB sub-millimeter receiver[J]. Astron. Astrophys., 2018, 619:153
    [78]
    ALLENDE-ALBA G, MONTENBRUCK O. Robust and precise baseline determination of distributed spacecraft in LEO[J]. Adv. Space Res., 2016, 57(1):46-63
    [79]
    JÄGGI A, MONTENBRUCK O, MOON Y, et al. Inter-agency comparison of TanDEM-X baseline solutions[J]. Adv. Space Res., 2012, 50(2):260-271
    [80]
    JÄGGI A, DAHLE C, ARNOLD D, et al. Swarm kinematic orbits and gravity fields from 18 months of GPS data[J]. Adv. Space Res., 2016(57)(1):218-233
    [81]
    ALLENDE-ALBA G, MONTENBRUCK O, HACKEL S, et al. Relative positioning of formation-flying spacecraft using single-receiver GPS carrier phase ambiguity fixing[J]. GPS Solut., 2018, 22(3):68
    [82]
    PETER H, JÄGGI A, FERNANDEZ J, et al. Sentinel-1A-first precise orbit determination results[J]. Adv. Space Res., 2017, 60(5):879-892
    [83]
    D'AMICO S, LARSSON R. Navigation and control of the PRISMA formation:In-Orbit experience[J]. IFAC Proc. Vol., 2011, 44(1):727-732
    [84]
    ESA. Optical Inter-satellite Terminals for GNSS[R]. European Space Agency, 2017
    [85]
    ESA. LiDISOR Final Report[R]. European Space Agency, 2017
    [86]
    TATYANKO D N, MACHEKHIN Y P, LUKIN K A, et al. The influence of optical radiation polarization upon the photocurrent of different trap detector models[J]. Telecomm. Radio Eng., 2015, 74(3):207-219
    [87]
    FILIPPENKOV O, LITOVCHENKO D, KUDRYASHOV V, et al. Multi-channel reception system for radiometry signals[C]//IEEE Ukrainian Microwave Week (UkrMW). Ukraine:IEEE, 2020:318-322
    [88]
    PAIL R, BINGHAM R, BRAITENBERG C, et al. Science and user needs for observing global mass transport to understand global change and to benefit society[J]. Surv. Geophys., 2015, 36(6):743-772
    [89]
    DAHL C, BAATZSCH A, DEHNE M, et al. Laser ranging interferometer on Grace Follow-On[C]//International Conference on Space Optics (ICSO). Biarritz:Proceedings of SPIE, 2017
    [90]
    ABICH K, ABRAMOVICI A, AMPARAN B, et al. In-orbit performance of the GRACE Follow-On laser ranging interferometer[J]. Phys. Rev. Lett., 2019, 123(3):031101. DOI: 10.1103/PhysRevLett.123.031101
    [91]
    SHEARD B S, HEINZEL G, DANZMANN K, et al. Intersatellite laser ranging instrument for the GRACE Follow-On mission[J]. J. Geod., 2012, 86(12):1083-1095
    [92]
    FISH V L, SHEA M, AKIYAMA K. Imaging black holes and jets with a VLBI array including multiple space-based telescopes[J]. Adv. Space Res., 2020, 65(2):821-830. https://doi.org/10.1016/j.asr.2019.03.029
    [93]
    Chael A, Johnson M, Narayan R, et al. High-resolution linear polarimetric imaging for the Event Horizon Telescope[J]. Astrophys. J., 2016, 829(1):11
    [94]
    CHAEL A, JOHNSON M, BOUMAN K, et al. Interferometric imaging directly with closure phases and closure amplitudes[J]. Astrophys. J., 2018, 857(1):23
    [95]
    ROELOFS F, JANSSEN M, NATARAJAN I, et al. "SYMBA:an end-to-end VLBI synthetic data generation pipeline"[J]. Astron. Astrophys., 2019, 636. DOI:10. 1051/0004-6361/201936622
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(395) PDF Downloads(154) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return