Volume 41 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
SONG Xiaojian, ZUO Pingbing, ZHOU Zilu. Magnetopause Indentation Induced by the Magnetosheath Fast Flowormalsize[J]. Journal of Space Science, 2021, 41(2): 234-241. doi: 10.11728/cjss2021.02.234
Citation: SONG Xiaojian, ZUO Pingbing, ZHOU Zilu. Magnetopause Indentation Induced by the Magnetosheath Fast Flowormalsize[J]. Journal of Space Science, 2021, 41(2): 234-241. doi: 10.11728/cjss2021.02.234

Magnetopause Indentation Induced by the Magnetosheath Fast Flowormalsize

doi: 10.11728/cjss2021.02.234
  • Received Date: 2019-08-18
  • Rev Recd Date: 2020-03-06
  • Publish Date: 2021-03-15
  • Recent studies indicated that the magnetopause indentation plays an important role in magnetosphere-ionosphere coupling. Confirmation of magnetopause indentation requires joint observations with multiple satellites. So far, there have been few magnetopause indentation events reported. In this paper, a case of magnetopause indentation induced by fast magnetosheath flow is reported with multiple spacecraft analysis based on the observations of five THEMIS probes. During the interval from 10:00 UT to 10:45 UT on 21 July 2007, when the five THEMIS probes are located near the subsolar magnetopause, a fast anti-sunward flow (with a velocity of 400km·-1) was observed in the magnetosheath just before THEMIS crossed the magnetopause to the magnetosphere. A magnetopause local indentation event was identified by comparing the nominal magnetopause and the tangential magnetopause plane calculated using the MVA method. In order to explore the origin of this magnetosheath fast flow, solar wind data observed by WIND satellite at L1 point were analyzed. It is found that the solar wind is very stable during this period. The Interplanetary Magnetic Field (IMF) is mainly radial and the component of the north-south direction is very small. It is speculated that the generation of this magnetosheath fast anti-sunward flow may be related to the radial IMF.


  • loading
  • [1]
    CAHILL L J, AMAZEEN P G. The boundary of the geomagnetic field[J]. J. Geophys. Res., 1963, 68(7):1835-1843
    HASEGAWA H. Structure and dynamics of the magnetopause and its boundary layers[J]. Monogr. Environ. Earth Planets, 2012, 1(2):71-119
    SPREITER J R, BRIGGS B R. Theoretical determination of the form of the boundary of the solar corpuscular stream produced by interaction with the magnetic dipole field of the Earth[J]. J. Geophys. Res., 1962, 67(1):37-51
    PHAN T D, PASCHMANN G. Low-latitude dayside magnetopause and boundary layer for high magnetic shear:1. Structure and motion[J]. J. Geophys. Res.:Space Phys., 1996, 101(A4):7801-7815
    SHUE J H, CHAO J K, SONG P, et al. Anomalous magnetosheath flows and distorted subsolar magnetopause for radial interplanetary magnetic fields[J]. Geophys. Res. Lett., 2009, 36(18):18112
    JELINEK K, NEMECEK Z, SAFRANKOVA J, et al. Thin magnetosheath as a consequence of the magnetopause deformation:THEMIS observations[J]. J. Geophys. Res.:Space Phys., 2010, 115(A10):A10203
    FAIRFIELD D H. Average and unusual locations of the Earth's magnetopause and bow shock[J]. J. Geophys. Res., 1971, 76(28):6700-6716
    PETRINEC S P, SONG P, RUSSELL C T. Solar-cycle variations in the size and shape of the magnetopause[J]. J. Geophys. Res.:Space Phys., 1991, 96(A5):7893-7896
    SHUE J H, CHAO J K, FU H C, et al. A new functional form to study the solar wind control of the magnetopause size and shape[J]. J. Geophys. Res., 1997, 102(A5):9497-9511
    SONG P, DEZEEUW D L, GOMBOSI T I, et al. A numerical study of solar wind——magnetosphere interaction for northward interplanetary magnetic field[J]. J. Geophys. Res.:Space Phys., 1999, 104(A12):28361-28378
    FAIRFIELD D H, BAUMJOHANN W, PASCHMANN G, et al. Upstream pressure variations assocated with the bow shock and their effects on the magnetosphere[J]. J. Geophys. Res.:Space Phys., 1990, 95(A4):3773-3786
    FUJITA S, GLASSMEIER K H, KAMIDE K. MHD waves generated by the Kelvin-Helmholtz instability in a nonuniform magnetosphere[J]. J. Geophys. Res.:Space Phys., 1996, 101(A12):27317-27325
    GLASSMEIER K H, HEPPNER C. Traveling magnetospheric convection twin vortices-another case study, global characteristics, and a model[J]. J. Geophys. Res.:Space Phys., 1992, 97(A4):3977-3992
    PLASCHKE F, ANGELOPOULOS V, GLASSMEIER K H. Magnetopause surface waves:THEMIS observations compared to MHD theory[J]. J. Geophys. Res.:Space Phys., 2013, 118(4):1483-1499
    WNAG S, ZONG Q G, ZHANG H. Cases and statistical study on hot flow anomalies with Cluster spacecraft data[J]. Sci. China Tech. Sci., 2012, 42(7):737-754(汪珊, 宗秋刚, 张慧. 基于Cluster卫星观测的太阳风热流异常事件的分析研究[J]. 中国科学:技术科学, 2012, 42(7):737-754)
    DMITRIEV A V, SUVOROVA A V. Traveling magnetopause distortion related to a large-scale magnetosheath plasma jet:THEMIS and ground-based observations[J]. J. Geophys. Res.:Space Phys., 2012, 117(A8):A08217
    SIBECK D G, BORODKOVA N L, SCHWARTZ S J, et al. Comprehensive study of the magnetospheric response to a hot flow anomaly[J]. J. Geophys. Res., 1999, 104(A3):4577-4593
    TKACHENKO O, SAFRANKOVA J, NEMECEK Z, et al. Dayside magnetopause transients correlated with changes of the magnetosheath magnetic field orientation[J]. Ann. Geophys., 2011, 29(4):687-699
    ELSEN R K, WINGLEE R M. The average shape of the magnetopause:a comparison of three-dimensional global MHD and empirical models[J]. J. Geophys. Res.:Space Phys., 1997, 102(A3):4799-4819
    SOTIRELIS T, MENG C I. Magnetopause from pressure balance[J]. J. Geophys. Res.:Space Phys., 1999, 104(A4):6889-6898
    DMITRIEV A V, SUVOROVA A V. Three-dimensional artificial neural network model of the dayside magnetopause[J]. J. Geophys. Res.:Space Phys., 2000, 105(A8):18909-18918
    WU J G, LUNDSTEDT H. Geomagnetic storm predictions from solar wind data with the use of dynamic neural networks[J]. J. Geophys. Res., 1997, 102(A7):14255-14268
    HAN D S, CHEN X C, LIU J J, et al. An extensive survey of dayside diffuse aurora based on optical observations at Yellow River Station[J]. J. Geophys. Res.:Space Phys., 2015, 120(9):7447-7465
    HAN D S, NISHINURA Y, LYONS L R, et al. Throat aurora:the ionospheric signature of magnetosheath particles penetrating into the magnetosphere[J]. Geophys. Res. Lett., 2016, 43(5):1819-1827
    HAN D S, LIU J J, CHEN X C, et al. Direct evidence for throat aurora being the ionospheric signature of magnetopause transient and reflecting localized magnetopause indentations[J]. J. Geophys. Res.:Space Phys., 2018, 123(4):2658-2667
    HAN D S, HIETALA H, CHEN X C, et al. Observational properties of dayside throat aurora and implications on the possible generation mechanisms[J]. J. Geophys. Res.:Space Phys., 2017, 122(2):1853-1870
    SONNERUP B U Ö, SCHEIBLE M. Minimum and maximum variance analysis[M]//Analysis Methods for Multi*spacecraft Data. Netherlands:ESA Publications Division, 1998:185-220
    SHUE J H, SONG P, RUSSELL C T, et al. Magnetopause location under extreme solar wind conditions[J]. J. Geophys. Res.:Space Phys., 1998, 103(A8):17691-17700
    NEUGEBAUER M, ALEXANDER C. Shuffling foot points and magnetohydrodynamic discontinuities in the solar wind[J]. J. Geophys. Res. Atmosphys., 1991, 96 (A6):9409-9418
    Phan T D, EASTWOOD J P, SHAY M A, et al. Electron magnetic reconnection without ion coupling in Earth's turbulent magnetosheath[J]. Nature, 2018, 557(7704):202-206
    PHAN T D, LOVE T E, GOSLING J T, et al. Triggering of magnetic reconnection in a magnetosheath current sheet due to compression against the magnetopause[J]. Geophys. Res. Lett., 2011, 38(17):L17101
    LIN Y, LEE L C, YAN M. Generation of dynamic pressure pulses downstream of the bow shock by variations in the interplanetary magnetic field orientation[J]. J. Geophys. Res.:Space Phys., 1996, 101(A1):479-493
    STERCK D H, LOW B C, POEDTS S. Complex magnetohydrodynamic bow shock topology in field-aligned low-be flow around a perfectly conducting cylinder[J]. Phys. Plasmas, 1998, 5:4015-4027
    LIN Y. Generation of anomalous flows near the bow shock by its interaction with interplanetary discontinuities[J]. J. Geophys. Res.:Space Phys., 1997, 102(A11):24265-24281
    CABLE S, LIN Y, HOLLOWAY J L. Intermediate shocks in three-dimensional magnetohydrodynamic bow-shock flows with multiple interacting shock fronts[J]. J. Geophys. Res.:Space Phys., 2007, 112(A9):A12299
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(174) PDF Downloads(61) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint