Volume 41 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
SUN Luyuan, WANG Hui, HE Yangfan. Local Time Differences in the Ionospheric Electromagnetic Ion Cyclotron Waves during Storm Timeormalsize[J]. Chinese Journal of Space Science, 2021, 41(2): 250-260. doi: 10.11728/cjss2021.02.250
Citation: SUN Luyuan, WANG Hui, HE Yangfan. Local Time Differences in the Ionospheric Electromagnetic Ion Cyclotron Waves during Storm Timeormalsize[J]. Chinese Journal of Space Science, 2021, 41(2): 250-260. doi: 10.11728/cjss2021.02.250

Local Time Differences in the Ionospheric Electromagnetic Ion Cyclotron Waves during Storm Timeormalsize

doi: 10.11728/cjss2021.02.250
  • Received Date: 2020-01-10
  • Rev Recd Date: 2020-09-14
  • Publish Date: 2021-03-15
  • By using high-resolution (50 Hz) magnetic field observations from Swarm constellation, the temporal and spatial characteristics of Electromagnetic Ion Cyclotron (EMIC) waves in different local time sectors at mid-latitudes are investigated during the magnetic storm period of 16-25 March 2015. There are comparable number of EMIC wave events in the dawn and dusk sectors, while there are more EMIC wave events in the pre-noon sector than in the pre-midnight sector. The duskside preference is related to the plasmaspheric plume, while the dawnside preference is related to the enhanced solar wind dynamic pressure and dense cold plasma. The wave frequency in the dawn and pre-noon sectors is higher than that in the dusk and pre-midnight sectors, implying the local time difference in the source location and the ion composition. Most of the duskside events occur in the early recovery phase, while the dawnside events occur in the late recovery phase. The time difference comes from the time required for the westward drift of energetic ions and local time difference in the plasmapause position. H+ band waves are mainly found in the 06:00 MLT-10:00 MLT sector, while He+ band waves are mainly confined in the 18:00 MLT-22:00 MLT sector. There is no H+ band but a two band (He+ and O+) EMIC wave during the storm main phase, indicating the role of the dense oxygen ion in inhibiting the H+ band in the inner magnetosphere.

     

  • loading
  • [1]
    BORTNIK J, THORNE R M, OMIDI N, et al. Nonlinear evolution of EMIC waves in a uniform magnetic field:2. Test-particle scattering[J]. J. Geophys. Res., 2010, 115(A12):A12242
    [2]
    JORDANOVA V K, FARRUGIA C J, THORNE R M, et al. Modeling ring current proton precipitation by electromagnetic ion cyclotron waves during the May 14-16, 1997 storm[J]. J. Geophys. Res., 2001, 106(A1):7-22
    [3]
    THORNE R M, KENNEL C F. Relativistic electron precipitation during magnetic storm main phase[J]. J. Geophys. Res., 1971, 7(19):4446
    [4]
    ANDERSON B J, ERLANDSON R E, ZANETTI L J. A statistical study of Pc1s magnetic pulsations in the equatorial magnetosphere. I-Equatorial occurrence distributions. I!I. Wave properties[J]. J. Geophys. Res., 1992, 97(A3):3075-3088
    [5]
    FRASER B J, NGUYEN T S. Is the plasmapause a preferred source region of electromagnetic ion cyclotron waves in the magnetosphere[J]. J. Atmos. Sol:Terr. Phys., 2001, 63(11):1225-1247
    [6]
    MIN K, LEE J, KEIKA K, et al. Global distribution of EMIC waves derived from THEMIS observations[J]. J. Geophys. Res., 2012, 117(A5):A05219
    [7]
    ALLEN R C, ZHANG J C, KISTLER L M, et al. A statistical study of EMIC waves observed by Cluster:1. Wave properties[J]. J. Geophys. Res., 2015, 120(7):5574-5592
    [8]
    ANDERSON B J, HAMILTON D C. Electromagnetic ion cyclotron waves stimulated by modest magnetospheric compressions[J]. J. Geophys. Res., 1993, 98(A7):11369-11382
    [9]
    ARNOLDY R L, ENGEBRETSON M J, DENTON R E, et al. Pc 1 waves and associated unstable distributions of magnetospheric protons observed during a solar wind pressure pulse[J]. J. Geophys. Res., 2005, 110(A7):A07229
    [10]
    USANOVA M E, MANN I R, KALE Z C, et al. Conjugate ground and multisatellite observations of compression-related EMIC Pc1 waves and associated proton precipitation[J]. J. Geophys. Res., 2010, 115(A7):A07208
    [11]
    ENGEBRETSON M J, POSCH J L, CAPMAN N S S, et al. MMS, van allen probes, GOES 13, and ground-based magnetometer observations of EMIC wave events before, during, and after a modest interplanetary shock[J]. J. Geophys. Res., 2018, 123(10):8331-8357
    [12]
    KOZYRA J U, CRAVENS T E, NAGY A F, et al. Effects of energetic heavy ions on electromagnetic ion cyclotron wave generation in the plasmapause region[J]. J. Geophys. Res., 1984, 89(A4):2217-2233
    [13]
    BRÄYSY T, MURSULA K, MARKLUND G, et al. Ion cyclotron waves during a great magnetic storm observed by Freja double-probe electric field instrument[J]. J. Geophys. Res., 1998, 103(A3):4145-4155
    [14]
    LEE L C, KWOK Y C. A mechanism for the IPDP pilsations[J]. J. Geophys. Res., 1984, 89(A2):877-882
    [15]
    BLUM L W, MACDONALD E A, GARY S P, et al. Ion observations from geosynchronous orbit as a proxy for ion cyclotron wave growth during storm times[J]. J. Geophys. Res., 2009, 114(A10):A10214
    [16]
    HALFORD A J, FRASER B J, MORLEY S K, et al. EMIC wave activity during geomagnetic storm and nonstorm periods:CRRES results[J]. J. Geophys. Res., 2010, 115(A12):A12248
    [17]
    ENGEBRETSON M J, POSCH J L, WESTERMAN A M, et al. Temporal and spatial characteristics of Pc1 waves observed by ST5[J]. J. Geophys. Res., 2008, 113(A7):A07206
    [18]
    SAIKIN A A, ZHANG J C, SMITH C W, et al. The dependence on geomagnetic conditions and solar wind dynamic pressure of the spatial distributions of EMIC waves observed by the Van Allen Probes[J]. J. Geophys. Res., 2016, 121(5):43625
    [19]
    WANG D, YUAN Z, YU X, et al. Geomagnetic storms and EMIC waves:van allen probe observation[J]. J. Geophys. Res., 2016, 121(7):64447
    [20]
    KEIKA K, TAKAHASHI K, UKHORSKIY A Y, et al. Global characteristics of electromagnetic ion cyclotron waves:occurrence rate and its storm dependence[J]. J. Geophys. Res., 2013, 118(7):41357
    [21]
    MEREDITH N P, HORNE R B, KERSTEN T, et al. Global morphology and spectral properties of EMIC waves derived from CRRES observations[J]. J. Geophys. Res., 2014, 119(7):5328-5342
    [22]
    CHEN H, GAO X, LU Q, et al. Analyzing EMIC waves in the inner magnetosphere using long-term Van Allen probes observations[J]. J. Geophys. Res., 2019, 124(9):7402-7412
    [23]
    KASAHARA Y, SAWADA A, YAMAMOTO M, et al. Ion-Cyclotron emissions observed by the satellite akebono in the vicinity of the magnetic equator[J]. Radio. Sci., 1992, 27(2):347-362
    [24]
    SAIKIN A A, ZHANG J C, ALLEN R C, et al. The occurrence and wave properties of H+-, He+-, and O+-band EMIC waves observed by the Van Allen Probes[J]. J. Geophys. Res., 2015, 120(9):7477-7492
    [25]
    WANG H, HE Y, LÜHR H, et al. Storm time EMIC waves observed by swarm and van allen probe satellites[J]. J. Geophys. Res., 2019, 124(1):293-312
    [26]
    SAVITZKY A, GOLAY M J E. Smoothing and differentiation of data by simplifified least squares procedures[J]. Anal. Chem., 1964, 36(8):1627-1639
    [27]
    TSYGANENKO N A. Modeling the Earth's magnetospheric magnetic field confined within a realistic magnetopause[J]. J. Geophys. Res., 995, 100(A4):5599
    [28]
    TSYGANENKO N A. Effects of the solar wind conditions in the global magnetospheric configurations as deduced from data-based field models[A]. International Conference on Substorms, 1996, 389:181
    [29]
    FRASER B J, GREW R S, MORLEY S K, et al. Storm time observations of electromagnetic ion cyclotron waves at geosynchronous orbit:GOES results[J]. J. Geophys. Res., 2010, 115(A5):A05208
    [30]
    USANOVA M E, MANN I R, RAE I J, et al. Multipoint observations of magnetospheric compression-related EMIC Pc1 waves by THEMIS and CARISMA[J]. Geophys. Res. Lett., 2008, 35(17):L17S25
    [31]
    YUE C, JUN C W, BORTNIK J, et al. The relationship between EMIC wave properties and proton distributions based on Van Allen probes observations[J]. Geophys. Res. Lett., 2019, 46(8):4070-4078
    [32]
    OLSON J V, LEE L C. Pc1 wave generation by sudden impulses[J]. Planet. Space Sci., 1983, 31(3):295-302
    [33]
    LAVRAUD B, DENTON M H, THOMSEN M F, et al. Superposed epoch analysis of dense plasma access to geosynchronous orbit[J]. Ann. Geophys., 2005, 23(7):2519-2529
    [34]
    ANDRE M, YAU A. Theories and observations of ion energization and outflow in the high latitude magnetosphere[J]. Space Sci. Rev., 1997, 80(1-2):27-48
    [35]
    KIM H, HWANG J, PARK J, et al. Large-scale ducting of Pc1 pulsations observed by swarm satellites and multiple ground networks[J]. Geophys. Res. Lett., 2018, 45(23):12703-12712
    [36]
    USANOVA M E, MANN I R, BORTNIK J, et al. THEMIS observations of electromagnetic ion cyclotron wave occurrence:dependence on AE, SYM-H, and solar wind dynamic pressure[J]. J. Geophys. Res., 2012, 117(A10):A10218
    [37]
    TETRICK S S, ENGEBRETSON M J, POSCH J L, et al. Location of intense electromagnetic ion cyclotron (EMIC) wave events relative to the plasmapause:Van Allen Probes observations[J]. J. Geophys. Res., 2017, 122(4):4064-4088
    [38]
    KIM K H, SHIOKAWA K, MANN I R, et al. Longitudinal frequency variation of long-lasting EMIC Pc1——Pc2 waves localized in the inner magnetosphere[J]. Geophys. Res. Lett., 2016, 43(3):1039-1046
    [39]
    KIM E H, JOHNSON J R, KIM H, et al. Inferring magnetospheric heavy ion density using EMIC waves[J]. J. Geophys. Res., 2015, 120(8):6464-6473
    [40]
    LEE D Y, NOH S J, CHOI C R, et al. Effect of hot anisotropic He+ ions on the growth and damping of electromagnetic ion cyclotron waves in the inner magnetosphere[J]. J. Geophys. Res., 2017, 122:4935-4942
    [41]
    THORNE R M, HORNE R B. 1Modulation of electromagnetic ion cyclotron instability due to interaction with ring current O+ during magnetic storms[J]. J. Geophys. Res., 1997, 102(A7):14155-14163
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(380) PDF Downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return