Volume 41 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
HU Yunjie, YI Fan. Structures and Interannual Variations of the Nocturnal Mesospheric Na and Fe Layers at 30°Normalsize[J]. Journal of Space Science, 2021, 41(2): 279-285. doi: 10.11728/cjss2021.02.279
Citation: HU Yunjie, YI Fan. Structures and Interannual Variations of the Nocturnal Mesospheric Na and Fe Layers at 30°Normalsize[J]. Journal of Space Science, 2021, 41(2): 279-285. doi: 10.11728/cjss2021.02.279

Structures and Interannual Variations of the Nocturnal Mesospheric Na and Fe Layers at 30°Normalsize

doi: 10.11728/cjss2021.02.279
  • Received Date: 2020-03-31
  • Rev Recd Date: 2021-01-18
  • Publish Date: 2021-03-15
  • By analyzing the observational data of the Wuhan University Na and Fe lidars from January 2004 to December 2011, the average characteristics, nighttime and seasonal variations of the mesospheric Na and Fe layers at 30°N are obtained. The average centroid height of the Na layer is 91.36km, while the average RMS (root-mean-square) width is 4.64km. The corresponding results for the Fe layer are respectively 88.99 and 4.57km. Considering the influence of the nighttime and seasonal changes of the Na and Fe layers, we extract the interannual changes of the Na and Fe layers. It is found that both the Na and Fe layers are relatively stable during this period. The centroid height of the Na layer decreases by about 58m in the nearly eight years with an annual change rate of -7.91m, and the RMS width of Na layer decreases by about 151m with an change rate of -20.60m·a-1. Meanwhile the centroid height of the Fe layer has a decrease of about 230m with an annual change rate of -31.36m·a-1, and the RMS width of the Fe layer show an increases with an annual change rate of 21.01m·a-1. In addition, the factors that affect the interannual variation of the metal layer were analyzed, and the similarities and differences between the Na layer and the Fe layer were drawn. Based on our research, it is estimated that the atmospheric temperature in the MLT region over Wuhan has a cooling trend closed to pre decade 0.85K.

     

  • loading
  • [1]
    CLEMESHA B R, KIRCHHOFF V, SIMONICH D, et al. Evidence of an extra-terrestrial source for the mesospheric sodium layer[J]. Geophys. Res. Lett., 1978, 5:873-876
    [2]
    PLANE J, COX R, ROLLASON R. Metallic layers in the mesopause and lower thermosphere region[J]. Adv. Space Res., 1999, 24(11):1559-1570
    [3]
    ZENG L, YI F. Lidar observations of Fe and Na meteor trails with high temporal Resolution[J]. J. Atmos. Sol.:Terr. Phys., 2011, 73:2367-2372
    [4]
    YI F, ZHANG S, YU C, et al. Simultaneous and common-volume Fe and Na Lidar observations[J]. J. Atmos. Sol.:Terr. Phys., 2013, 102:172-184
    [5]
    BOWMAN M R, GIBSON A J, STANFORD M C. Atmosphere sodium measured by a tuned laser radar[J]. Nature, 1969, 221:456-457
    [6]
    SIMONICH D, CLEMESHA B R, KIRCHHOFF V. The mesospheric Sodium layer at 23°S:nocturnal and seasonal variations[J]. J. Geophys. Res., 1979, 84:1543-1550
    [7]
    YI F, YU C, ZHANG S, YUE X, et al. Seasonal variations of the nocturnal Na and Fe layers at 30°N[J]. J. Geophys. Res., 2009, 114:D01301
    [8]
    CLEMESHA B R, SIMONICH B R, BATISTA P P. A long-term trend of the atmospheric Sodium layer:possible evidence for global change[J]. Geophys. Res. Lett., 1992, 19:457-460
    [9]
    CLEMESHA B R, BATISTA P P, SIMONICH D M. Long-term and solar cycle changes in the atmospheric sodium layer[J]. J Atmos. Terr. Phys., 1997, 59:1673-1678
    [10]
    CLEMESHA B R, BATISTA P P, SIMONICH D M. Long-term variations in the centroid height of the atmospheric sodium layer[J]. Adv. Space Res., 2003, 32:1707-1711
    [11]
    CLEMESHA B R, TAKAHASHI H, SIMONICH D M. Experiment evidence for solar cycle and long-term changes in the low-latitude MLT region[J]. J. Atmos. Sol.:Terr. Phys., 2004, 67:191-196
    [12]
    CLEMESHA B R, SIMONICH D M, BATISTA P P. Negligible long-term temperature trend in the upper atmosphere at 23°S[J]. J. Geophys. Res. Atmos., 2004, 109:D05302. DOI: 10.1029/2003JD004243
    [13]
    YI F, ZHANG S, ZENG H, et al. Lidar observations of sporadic Na layers over Wuhan (30.5°N,114.4°E)[J]. Geophys. Res. Lett., 2002, 29(9):1345
    [14]
    YI F, ZHANG S, YU C, et al. Simultaneous observations of sporadic Fe and Na layers over Wuhan (30.5°N, 114.4°E)[J]. J. Geophys. Res. Atmos., 2007, 112:04303. DOI: 10.1029/2006JD007413
    [15]
    LIU Y J, YI F. Behavior of sporadic Na layers on small scale[J]. J. Atmos. Sol.:Terr. Phys., 2009, 32(10):1321-1332
    [16]
    GARDNER C S. Na resonance fluorescence lidar applications in atmospheric science and astronomy[J]. Proceed. IEEE, 1989, 77(3):408-418
    [17]
    MA Z, YI F. High-altitude sporadicmetal atom layers observed with Na and Fe lidars at 30°N[J]. J Atmos. Terr. Phys., 2010, 72:482-491
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(209) PDF Downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return