Volume 41 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
YUAN Junxia, YIN Hong, MA Lingling, ZHANG Wende, ZHANG Qin, XU Kanyan. Research Progress of Space Microbial Experimental Technologiesormalsize[J]. Journal of Space Science, 2021, 41(2): 286-292. doi: 10.11728/cjss2021.02.286
Citation: YUAN Junxia, YIN Hong, MA Lingling, ZHANG Wende, ZHANG Qin, XU Kanyan. Research Progress of Space Microbial Experimental Technologiesormalsize[J]. Journal of Space Science, 2021, 41(2): 286-292. doi: 10.11728/cjss2021.02.286

Research Progress of Space Microbial Experimental Technologiesormalsize

doi: 10.11728/cjss2021.02.286
  • Received Date: 2019-09-16
  • Rev Recd Date: 2020-08-06
  • Publish Date: 2021-03-15
  • Microorganism is often used as biological model for space life research, extraterrestrial life detection and research on planetary protection due to its simple structure, short growth cycle, fast propagation and easy space loading. With the development of China's space station program, the demand for more advanced microbial space experimental device is becoming more and more urgent. In this study, the microbial techniques which have already been implemented in space environment were investigated, and the progress and trend of space microbial experimental techniques including microbial incubation, preservation, detection, analysis, as well as extraterrestrial life detection were also discussed. Finally, suggestions on the development of space microorganism experiments using China's Space Station in the future are put forward in this paper.

     

  • loading
  • [1]
    BAQUE M, VERSEUX C, RABBOW E, et al. Detection of macromolecules in desert cyanobacteria mixed with a lunar mineral analogue after space simulations[J]. Orig. Life. Evol. Biosph., 2014, 44:209-221
    [2]
    FAJARDO-CAVAZOS P, LEEHAN J D, NICHOLSON W L. Alterations in the spectrum of spontaneous rifampicin-resistance mutations in the Bacillus subtilisrpoB gene after cultivation in the human spaceflight environment[J]. Front. Microbiol., 2018, 9:192
    [3]
    HORNECK G, MOELLER R, CADET J, et al. Resistance of bacterial endospores to outer space for planetary protection purposes-experiment PROTECT of the EXPOSE-E mission[J]. Astrobiology, 2012, 12(5):445-456
    [4]
    BLABER E, DVOROCHKIN N, ALMEIDA E, et al. Bioculture system:expanding ISS space bioscience capabilities for fundamental stem cell research and space biosciences research and commercial applications[C]//40th COSPAR Scientific Assembly. Moscow:NASA, 2014
    [5]
    SATO K Y, ALMEIDA E, AUSTIN E M. NASA Bioculture System:from Experiment Definition to Flight Payload[R]. NASA technical reports, ARC-E-DAA-TN16080, 2014
    [6]
    KAROUIAF F, PEYVAN K, POHORILLE A. Toward biotechnology in space:high-throughput instruments for in situ biological research beyond earth[J]. Biotechnol. Adv., 2017, 35:905-932
    [7]
    FAJARDO-CAVAZOS P, NICHOLSON W L. Cultivation of Staphylococcus epidermidis in the human spaceflight environment leads to alterations in the frequency and spectrum of spontaneous rifampicin-resistance mutations in the rpoBgene[J]. Front. Microbiol., 2016, 7:999
    [8]
    18-0061-0
    [9]
    KLAUS D M, HOWARD H N. Antibiotic efficacy and microbial virulence during space flight[J]. Trends Biotechnol., 2006, 24(3):131-136
    [10]
    KIM W, TENGRA FK, YOUNG Z, et al. Spaceflight promotes biofilm formation by pseudomonas aeruginosa[J]. PLoS One, 2013, 8(4).DOI: 10.1371/journal.pone.0062437
    [11]
    CRABBE A, DE BOEVER P, VAN HOUDT R, et al. Use of the rotating wall vessel technology to study the effect of shear stress on growth behavior of pseudomonasaeruginosa PA01[J]. Environ. Microbiol., 2008, 10(8):2098-2110
    [12]
    DALAL S, SANTA MARIA S R, LIDDELL L, et al. Biosentinel:improving desiccation tolerance of Yeast biosensors for deep-space missions[C]//33rd American Society for Gravitational and Space Research (ASGSR) Annual Meeting. Seattle:NASA, 2017
    [13]
    BRILLOUET C, BRIGANTI L, SCHWARZWALDER A. ESA experiments with the European modular cultivation system (EMCS)[C]//Proceedings of the Life in Space for Life on Earth Symposium. Angers:ESA Publication Division, 2008
    [14]
    EVERROAD C.Long-term multi-generational evolutionary studies of bacteria in the spaceflight environment (MVP-Cell-02)[R]. NASA technical reports, ARC-E-DAA-TN65372, 2019
    [15]
    NICHOLSON W L, MOELLEER R, HORNECK G. Transcriptomic responses of germinating Bacillussubtilis spores exposed to 1.5 years of space and simulated martian conditions on the EXPOSE-E experiment PROTECT[J]. Astrobiology, 2012, 12(5):469-486
    [16]
    ONOFRI S, DE VERA J P, ZUCCONI L, et al. Survival of Antarctic cryptoendolithic fungi in simulated Martian conditions on board the international space station[J]. Astrobiology, 2015, 15(12):1052-1059
    [17]
    MATTIODA A, COOK A, EHRENFREUND P, et al. The O/OREOS mission:first science data from the Space Environment Viability of Organics (SEVO) payload[J]. Astrobiology, 2012, 12(9):841-853
    [18]
    PAUL A L, FERL R J. Using Green Fluorescent Protein (GFP) reporter genes in RNA Later fixed tissue[J]. Gravit. Space Biol., 2011, 25(1):40-43
    [19]
    KIMW, TENGRA F K, YOUNG Z, et al. Spaceflight promotes biofilm formation by pseudomonas aeruginosa[J]. PLoS One, 2013. DOI: 10.1371/journal.pone.0062437
    [20]
    JOHNSON M D. NanoRacks, LLC Commercial Contributions to the US ISS National Laboratory Biological Research Facilities[R]. Texas:NanoRacks LLC, 2011
    [21]
    MORRIS H C, DAMON M, MAULE J, et al. Rapid culture-independent microbial analysis aboard the International Space Station (ISS)[J]. Astrobiology, 2012, 12(9):830-840
    [22]
    DAS A P, KUMAN PS, SWAIN S. Recent advances in biosensor based endotoxin detection[J]. Biosens. Bioelectron., 2013, 51:62-75
    [23]
    KAROUIA F, PEYVAN K, RICCO A, et al. Biological validation of the Gene Expression Measurement Module (GEMM) for microbial gene expression in space[C]//Astrobiology Science Conference. Chicago:NASA, 2015
    [24]
    CREWS N, WITTWER C, GALE B. Continuous-flow thermal gradient PCR[J]. Biomed. Microdevices, 2008, 10(2):187-195
    [25]
    MABILAT C, ABAIBOU H, LINDNER R, et al. Current Progresses of Midass:the European project for an Automated Microbial Identification Instrument[R]. California:NASA'S AMES Research Center, 2015
    [26]
    BECHY-LOIZEAU A L, FLANDROIS J P, ABAIBOU H. Assessment of polycarbonate filter in a molecular analytical system for the microbiological quality monitoring of recycled waters onboard ISS[J]. Life Sci. Space Res., 2015, 6:29-35
    [27]
    ADAMSKI M G, GUMANN P, BARID A E. A method for quantitative analysis of standard and high-throughput qPCR expression data based on input sample quantity[J]. PLoS One, 2014.DOI: 10.1371/journal.pone.0103917
    [28]
    PARRA M, SCHONFELD J. WetLab-2:Wet lab RNA Smart Cycler providing PCR capability on ISS[C]//Joint CSA/ESA/JAXA/NASA Increments 43 and 44 Science Symposium. California:NASA'S Ames Research Center, 2015
    [29]
    OUBRE C M, BIRMELE M N, CASTRO V A, et al. Microbial monitoring of common opportunistic pathogens by comparing multiple Real-Time PCR platforms for potential space applications[C]//43rd International Conference on Environmental Systems. Colorado:NASA, 2013
    [30]
    DUC MTL, OSMAN S, VAISHAMPAYAN P, et al. Comprehensive census of bacteria in clean rooms by using DNA microarray and cloning methods[J]. Appl. Environ. Microbiol., 2009, 75(20):6559-6567
    [31]
    THISSEN J B, MCLOUGHLIN K, GARDNER S, et al. Analysis of sensitivity and rapid hybridization of a multiplexed microbial detection microarray[J]. J. Virol. Methods, 2014, 201:73-78
    [32]
    MCINTYRE A B R, RIZZARDI L, YU A M, et al. Nanopore sequencing in microgravity[J]. NpjMicrograv., 2016, 2:16035
    [33]
    CASTRO-WALLACE S, CHIU C Y, JOHN K K, et al. Nanopore DNA sequencing and genome assembly on the international space station[J]. Sci. Rep., 2017, 7:18022
    [34]
    WANG Haiming. "Genes in Space-3" experiment succeeded in identification of microorganisms in ISS[J]. Chin. J. Space Sci., 2018, 38(2):135-135
    [35]
    WALTHER T C, MANN M. Mass spectrometry-based proteomics in cell biology[J]. J. Cell Biol., 2010, 190(4):491-500
    [36]
    FREISSINET C, GLAVIN D P, MAHAFFY P R, et al. Organic molecules in the Sheep bed mudstone, Gale Crater, Mars[J]. J. Geophys. Res. Planet., 2015, 120(3) 495-514
    [37]
    SMITH S A, BENARDINI J N, AANDERL D, et al. Identification and characterization of early mission phase microorganisms residing on the Mars science laboratory and assessment of their potential to survive Mars-like conditions[J]. Astrobiology, 2017, 17(3):253-265
    [38]
    PARRO V, DE DIEGO-CASTILLA G, MORENO-PZA M, et al. A microbial oasis in the hypersaline Atacama subsurface discovered by a life detector chip:implications for the search for life on Mars[J]. Astrobiology, 2011, 11(10):969-996
    [39]
    PARRO V, DE DIEGO-CASTILLA G, RODRIGUEZ-MANFREDI J A, et al. SOLID3:a multiplex antibody microarray-based optical sensor instrument for in situ life detection in planetary exploration[J]. Astrobiology, 2011, 11(1):15-28
    [40]
    CARR C E, MOJARRO A, TANI J, et al. Advancing the search for extra-terrestrial genomes[C]//IEEE Aerospace Conference. Montana:Institute of Electrical and Electronics Engineers, 2016
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(183) PDF Downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return