Volume 41 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
WANG Jia, XIN Xin, WAN Wenhui, CUI Xiaofeng, RONG Zhifei, YOU Yi, HE Ximing. Location and Accuracy Validation of Lunar Landing Point Based on Multi-source Imagesormalsize[J]. Chinese Journal of Space Science, 2021, 41(2): 320-328. doi: 10.11728/cjss2021.02.320
Citation: WANG Jia, XIN Xin, WAN Wenhui, CUI Xiaofeng, RONG Zhifei, YOU Yi, HE Ximing. Location and Accuracy Validation of Lunar Landing Point Based on Multi-source Imagesormalsize[J]. Chinese Journal of Space Science, 2021, 41(2): 320-328. doi: 10.11728/cjss2021.02.320

Location and Accuracy Validation of Lunar Landing Point Based on Multi-source Imagesormalsize

doi: 10.11728/cjss2021.02.320
  • Received Date: 2019-11-18
  • Rev Recd Date: 2020-10-20
  • Publish Date: 2021-03-15
  • High-precision positioning of the landing site is a critical step in the mission and an important prerequisite for surface operations of the lander and rover. In this paper, a high-precision positioning method of the landing site was designed based on image feature matching and multiple image localization methods. And the positioning experiment and accuracy validation were carried out in Chang'E-3 landing site. On the basis of high-precision image matching and geometric transformation, the matching precision between the sequent descent images reached sub-pixel, and the matching accuracy between LRO NAC image and medium-resolution descent image was better than 1 pixel. The landing position was calculated to be (44.1196°N, 19.5148°W). This method comprehensively utilized multi-source images, and didn't entirely depend on the mapping accuracy of the landing base map. It was a further refinement of the matching results between the images and landing base map. So, this high-precision positioning method can be applied in future deep space exploration missions.

     

  • loading
  • [1]
    WANG Jia, WU Weiren, LI Jian, et al. Vision based Chang'E-4 landing point localization[J]. Sci. Sin. Tech., 2020, 50:41-53 (王镓, 吴伟仁, 李剑, 等. 基于视觉的嫦娥四号探测器着陆点 定位[J]. 中国科学:技术科学, 2020, 50:41-53)
    [2]
    DI Kaichang, LIU Zhaoqin, LIU Bin, et al. Chang'E-4 lander localization based on multi-source data[J]. J. Remote Sens., 2019, 23(1):177-184. (邸凯昌, 刘召芹, 刘斌等. 多源数据的 嫦娥四号着陆点定位[J]. 遥感学报, 2019, 23(1):177-184)
    [3]
    LIU Jianjun, REN Xin, YAN Wei, et al. Descent trajectory reconstruction and landing site positioning of Chang'E-4 on the lunar farside[J]. Nature Commun., 2019, 10(1):4229
    [4]
    WAN Wenhui, LIU Zhaoqin, LIU Yiliang, et al. Descent image matching based position evaluation for Chang'E-3 landing point[J]. Spacecraft Eng., 2014, 23(4):5-12 (万文辉, 刘召芹, 刘一良, 等. 基于降落图像匹配的嫦娥三号着陆点位置评估[J]. 航天器工程, 2014, 23(4):5-12)
    [5]
    JIA Yang, LIU Shaochuang, LI Minglei, et al. Chang'E-3 system pinpoint landing localization based on descent image sequence[J]. Chin. Sci. Bull., 2014, 59:1838-1843 (贾阳, 刘少创, 李明磊, 等. 利用降落影像序列实现嫦娥三号系统着陆点高精度定位[J]. 科学通报, 2014, 59:1838-1843)
    [6]
    NASA Images of Chang'E-3 Landing Site[EB/OL]. NASA/GSFC/Arizona State University.[2014-01-23]. http://www.nasa.gov/content/nasa-images-of-change-3-landing-site/
    [7]
    WAGNER R V, ROBINSON M S, SPEYERER E J, et al. Locations of anthropogenic sites on the Moon[C]//45th Lunar & Planetary Science Conference. The Woodlands, Texas:Universities Space Research Association, 2014:225
    [8]
    LIU Bin, DI Kaichang, WANG Baofeng, et al. Positioning and precision validation of Chang'E-3 Lander based on multiple LRO NAC images[J]. Chin. Sci. Bull., 2015, 60:2750-2757 (刘斌, 邸凯 昌, 王保丰, 等. 基于LRO NAC影像的嫦娥三号着陆点高精度定位与精度验证[J]. 科学通报, 2015, 60:2750-2757)
    [9]
    LI CHunlai, LIU Jianjun, REN Xin, et al. Lunar Global High-precision terrain reconstruction based on Chang'E-2 stereo images[J]. Geomat. Inform. Sci. Wuhan Univ., 2018, 43(4):485-495 (李春来, 刘建军, 任鑫, 等. 基于嫦娥二号立体影像的全月 高精度地形重建[J]. 武汉大学学报:信息科学版, 2018, 43(4):485-495)
    [10]
    ROBINSON M S, BRYLOW S M, TSCHIMMEL M, et al. Lunar Reconnaissance Orbiter Camera (LROC) instrument overview[J]. Space Sci. Rev., 2010, 150(1/2/3/4):81-124
    [11]
    LOWE D G. Object recognition from local scale-invariant features[C]//Proceeding of the International Conference on Computer Vision, Kerkyra:IEEE, 1999
    [12]
    LOWE D G. Distinctive image features from scale-invariant keypoints[J]. Int. J. Comput. Vision, 2004, 60(2):91-110
    [13]
    WANG Jia, WAN Wenhui, ZHAO Huanzhou, et al. Vision-based positioning method for Chang'E-4 lander[J]. Man. Spaceflight, 2019, 25(1):12-18 (王镓, 万文辉, 赵焕洲, 等. 基于视觉的嫦娥四号探测器着 陆点定位方法[J]. 载人航天, 2019, 25(1):12-18)
    [14]
    XIN Xin. Research on Matching of Obiter Imagery and Digital Elevation Model[D]. Beijing:University of Chinese Academy of Sciences, 2019 (辛鑫, 月球轨道器影像与高程数据匹配方法研究[D]. 北京:中国科学院 大学, 2019)
    [15]
    MAZARICO E, ROWLANDS D D, NEUMANN G A, et al. Orbit determination of the lunar reconnaissance orbiter[J]. J. Geod., 2012, 86(3):193-207
    [16]
    BARKER M K, MAZARICO E, NEUMANN G A, et al. A new lunar digital elevation model from the lunar orbiter laser altimeter and SELENE terrain camera[J]. Icarus, 2016, 273:346-355
    [17]
    MOREL J M, YU G. ASIFT:a new framework for fully affine invariant image comparison[J]. SIAM J. Imag. Sci., 2009, 2(2):438-469
    [18]
    YU G, MOREL J M. ASIFT:an algorithm for fully affine invariant comparison[J]. Image Proc. Line, 2011, 1:11-38
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(497) PDF Downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return