Volume 41 Issue 3
May  2021
Turn off MathJax
Article Contents
ZHENG Zhichao, ZHANG Kedeng, WAN Xin, HE Yangfan, YU Lei, SUN Luyuan, GAO Jie, ZHONG Yunfang. Prediction of Equatorial Electrojet Based on the Neural Network during Quiet Time[J]. Chinese Journal of Space Science, 2021, 41(3): 392-401. doi: 10.11728/cjss2021.03.392
Citation: ZHENG Zhichao, ZHANG Kedeng, WAN Xin, HE Yangfan, YU Lei, SUN Luyuan, GAO Jie, ZHONG Yunfang. Prediction of Equatorial Electrojet Based on the Neural Network during Quiet Time[J]. Chinese Journal of Space Science, 2021, 41(3): 392-401. doi: 10.11728/cjss2021.03.392

Prediction of Equatorial Electrojet Based on the Neural Network during Quiet Time

doi: 10.11728/cjss2021.03.392
  • Received Date: 2019-11-27
  • Rev Recd Date: 2020-07-01
  • Publish Date: 2021-05-15
  • In this study, BP neural network technology was used to predict the variations of Equatorial Electrojet (EEJ) of Indian sector, Peruvian sector and CHAMP satellite during the magnetic quiet pe-riod after 2008. The neural network training data is the corresponding observation data of EEJ during the period of magnetic quiet from 2000 to 2007. The input parameters are day of year, local time, solar zenith angle, solar activity index (F10.7), lunar age and satellite geographic longitude, and the output parameters are EEJ. The EEJ prediction results are statistically analyzed and compared with the observation results. Results show that: BP neural network has good ability in predicting the variations of EEJ in the event, and the prediction results can reflect the important distribution characteristics of EEJ; there is very good correlation between the predicted values and the observed values of EEJ, and the correlation coefficient between the observed values and the predicted values of geomagnetic sta-tions can reach over 85%. In addition, the prediction results of BP neural network model are compared with those of Yamazaki's empirical model, and the performance of BP neural network is equivalent with Yamazaki's empirical model. The results show that BP neural network has excellent performance in predicting EEJ variations during quiet period, and has a good application prospect.

     

  • loading
  • [1]
    Cowling T. The electrical conductivity of an ionized gas in the presence of a magnetic field[J]. Terr. Phys., 1933, 38:19-26
    [2]
    CHAPMAN S. The equatorial electrojet as detected from the abnormal electric current distribution above Huancayo, Peru, and elsewhere[J]. Arch. Meteor. Geophys. Bioklimatol.: Atmos., 1951, 4(1):368-390
    [3]
    FORBES J M. The equatorial electroje[J]. Rev. Geophys., 1981, 19:469-504
    [4]
    CAIN J, SWEENEY R. The POGO data[J]. J. Atmos. Terr. Phys., 1973, 35:1231-1247
    [5]
    LANGEL R A, PURUCKER M, RAJARAM M. The equatorial electrojet and associated currents as seen in Magsat data[J]. J. Atmos. Terr. Phys., 1993, 55(93): 1233-1269
    [6]
    JADHAV G, RAJARAM M, RAJARAM R. A detailed study of equatorial electrojet phenomenon using Ørsted satellite observations[J]. J. Geophys. Res., 2002, 107(A8):1175
    [7]
    IVERS D, STENING R, TURNER J, et al. Equatorial electrojet from Ørsted scalar magnetic field observations[J]. J. Geophys. Res., 2003, 108(A2):1061
    [8]
    XIONG C, LÜHR H, FEJER B G. The response of equatorial electrojet, vertical plasma drift, and thermospheric zonal wind to enhanced solar wind input[J]. J. Geophys. Res. Space Phys., 2016, 121:5653-5663
    [9]
    ZHENG Z C, WANG H, LEI Y, et al. Temporal and spatial variations of the equatorial electrojet during storm times from CHAMP observations[J]. J. Atmos. Sol.: Terr. Phys., 2018, 179:307-315
    [10]
    RASTOGI R G, IYER K N. Quiet day variation of geomagnetic H-field at low latitudes[J]. J. Geomagnet. Geoelectr., 1976, 28(6):461-479
    [11]
    LÜHR H, MAUS S, ROTHER M. Noon-time equatorial electrojet: its spatial features as determined by the CHAMP satellite[J]. J. Geophys. Res., 2004, 109:A01306
    [12]
    RASTOGI R G, ALEX S, PATIL A. Seasonal variations of geomagnetic D, H and Z fields at low latitudes[J]. J. Geomagn. Geoelectr., 1994, 46:115-126
    [13]
    YAMAZAKI Y, YUMOTO K, CARDINAL M G, et al. An empirical model of the quiet daily geomagnetic field variation[J]. J. Geophys. Res.: Space Phys., 2011, 116(A10). DOI: 10.1029/2011JA016487
    [14]
    TARPLEY J D. Seasonal movement of the Sq current foci and related effects in the equatorial electrojet[J]. J. Atmos. Sol. Terr. Phys., 1973, 35:1063-1071
    [15]
    DOUMOUYA V, COHEN Y, ARORA B R, et al. Local time and longitude dependence of the equatorial electrojet magnetic effects[J]. J. Atmos. Sol.: Terr. Phys., 2003, 65(14/15):1265-1282
    [16]
    PATRICK Alken, STEFAN Maus. Spatio-temporal characterization of the equatorial electrojet from CHAMP, Ørsted, and SAC-C satellite magnetic measurements[J]. J. Geophys. Res., 2007, 112:A09305
    [17]
    RASTOGI R G. Longitudinal variation in the equatorial electrojet[J]. J. Atmos. Terr. Phys., 1962, 24:1031-1040
    [18]
    RASTOGI R G. Equatorial electrojet at a close pair of stations[J]. Curr. Sci., 2006, 91:272-273
    [19]
    LÜHR H, MANOJ C. The complete spectrum of the equatorial electrojet related to solar tides: CHAMP observations[J]. Annales. Geophys., 2013, 31(8):1315-1331
    [20]
    ZHOU Y L, LÜHR H, ALKEN P, et al. New perspectives on equatorial electrojet tidal characteristics derived from the Swarm constellation[J]. J. Geophys. Res.: Space Phys., 2016, 121(7):7226-7237
    [21]
    LÜHR H, ROTHER M, HÄUSLER K, et al. The influence of nonmigrating tides on the longitudinal variation of the equatorial electrojet[J]. J. Geophys. Res., 2008, 113(A8):1086-1091
    [22]
    ONWUMECHILI C A, EZEMA P O. Latitudinal and vertical parameters of the equatorial electrojet from an autonomous data set[J]. J. Atmos. Terr. Phys., 1992, 54(11/12):1535-1544
    [23]
    YAMAZAKI Y, STOLLE C, MATZKA J, et al. Quasi-6-day wave modulation of the equatorial electrojet[J]. J. Geophys. Res.: Space Phys., 2018, 123(5):4094-4109
    [24]
    RASTOGI R G. Geomagnetic storms and electric fields in the equatorial ionosphere[J]. Nature, 1977, 268:422-424
    [25]
    REIGBER C, LÜHR H, SCHWINTZER P. CHAMP mission status[J]. Adv. Space Res., 2002, 30(2):129-134
    [26]
    RICHMOND A D. Ionospheric electrodynamics using magnetic apex coordinates[J]. J. Geomag. Geoelectr., 1995, 47:191-212
    [27]
    SEXTON R S, DORSEY R E, JOHNSON J D. Optimization of neural networks: a comparative analysis of the genetic algorithm and simulated annealing[J]. Eur. J. Oper. Res., 1999, 114(3):589-601
    [28]
    SUGIURA M, FANSELAU G. Lunar Phase Numbers v and v' for Years 1850 to 2050[R]. Rep. X-612-66, 1966, 401
    [29]
    YAMAZAKI Y, KOSCH M J. The equatorial electrojet during geomagnetic storms and substorms[J]. J. Geophys. Res.: Space Phys., 2015, 120(3):2276-2287
    [30]
    RABIU A B, FOLARIN O O, UOZUMI T, et al. Longitudinal variation of equatorial electrojet and the occurrence of its counter electrojet[J]. Ann. Geophys., 2017, 35(3):535-545
    [31]
    WANG H, RIDLEY A J, LÜHR H. Validation of the space weather modeling framework using observations from CHAMP and DMSP[J]. Space Weather, 2008, 6(3). DOI: 10.1029/2007SW000355
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(496) PDF Downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return