Volume 41 Issue 3
May  2021
Turn off MathJax
Article Contents
CUI Yanmei, LIU Siqing, SHI Liqin. Automatic Recognition of Solar Active Regions Based on Real-time SDO/HMI Full Disk Magnetograms[J]. Chinese Journal of Space Science, 2021, 41(3): 402-410. doi: 10.11728/cjss2021.03.402
Citation: CUI Yanmei, LIU Siqing, SHI Liqin. Automatic Recognition of Solar Active Regions Based on Real-time SDO/HMI Full Disk Magnetograms[J]. Chinese Journal of Space Science, 2021, 41(3): 402-410. doi: 10.11728/cjss2021.03.402

Automatic Recognition of Solar Active Regions Based on Real-time SDO/HMI Full Disk Magnetograms

doi: 10.11728/cjss2021.03.402 cstr: 32142.14.cjss2021.03.402
  • Received Date: 2019-09-16
  • Rev Recd Date: 2020-04-29
  • Publish Date: 2021-05-15
  • Solar Active Regions (ARs) are sources of solar powerful eruptions. The characteristics of ARs are important factors for forecasting solar flares. The Space-weather HMI Active Region Patch (SHARP) is one of the key observations to derive physical properties and to develop solar eruption prediction models. Based on the real-time HMI full disk image, by referring to the computational method developed by Ref.[1] which involves intensity thresholding, morphological analysis and region growing. By comparing our results against those results from Solar Region Summary compiled by NOAA/SWPC during the time interval 2010—2018, it is found that the daily numbers of ARs recognized are in good agreement with the SWPC AR numbers, and their corresponding correlation coefficient is 0.87. On the whole, the total number of ARs recognized is less than the corresponding SWPC AR number. Most of the undetected regions are of small areas, weak magnetic fields and simple magnetic type, which can hardly produce any powerful eruptions. Hence, this study can provide real time data of ARs for forecasting of solar eruptions.

     

  • loading
  • [1]
    ZHANG J, WANG Y M, LIU Y. Statistical properties of solar active regions obtained from an automatic detection system and the computational biases[J]. Astrophys. J., 2010, 723:1006-1018
    [2]
    MCINTOSH P. The classification of sunspot groups[J]. Solar Phys., 1990, 125:251-267
    [3]
    ATAC T. Statistical relationship between sunspots and major flares[J]. Astrophys. Space Sci., 1987, 129:203-208
    [4]
    WANG H. Evolution of vector magnetic fields and the August 271990 X-3 flare[J]. Solar Phys., 1992, 140:85-98
    [5]
    WANG T J, XU A, ZHANG H Q. Evolution of vector magnetic fields and vertical currents and their relationship with solar flares in AR 5747[J]. Solar Phys., 1994, 155:99-122
    [6]
    WANG J, SHI Z, WANG H, et al. Flares and the magnetic nonpotentiality[J]. Astrophys. J., 1996, 456:861-878
    [7]
    BAO S D, ZHANG H Q, AI G X, et al. A survey of flares and current helicity in active regions[J]. Astron. Astrophys. Suppl. Ser., 1999, 139(2):311-320
    [8]
    ZHANG H Q. Electric current and magnetic shear in solar active regions[J]. Astrophys. J., 2001, 557(1):L71-L74
    [9]
    CUI Y, LI R, ZHANG L, et al. Correlation between solar flare productivity and photospheric magnetic field properties[J]. Solar Phys., 2006, 237(1):45-59
    [10]
    LEKA K D, BARNES G. Photospheric magnetic field properties of flaring versus flare-quiet active regions. I. Data general approach and sample results[J]. Astrophys. J., 2003, 595:1277-1295
    [11]
    LEKA K D, BARNES G. Photospheric magnetic field properties of flaring versus flare-quiet active regions. I!I. Discriminant analysis[J]. Astophys.J., 2003, 595:1296-1306
    [12]
    CUI Yanmei, WANG Haimin, XU Yan, et al. Statistical study of magnetic topology for eruptive and confined solar flares[J]. J. Geophys. Res.: Space Phys., 2018, 123(3):1704-1714
    [13]
    QAHWAJI R, COLAK T. Automatic short-term solar flare prediction using machine learning and sunspot associations[J]. Solar Phys., 2007, 241:195-211
    [14]
    NÚÑEZ M, FIDALGO R, BAENA M, et al. The influence of active region information on the prediction of solar flares: an empirical model using data mining[J]. Ann. Geophys., 2005, 23(9):3129-3138
    [15]
    SONG H, TAN C, JING J, et al. Statistical assessment of photospheric magnetic features in imminent solar flare predictions[J]. Solar Phys., 2008, 254(1):101-125
    [16]
    YUAN Y, SHIH F Y, JING J, et al. Automated flare forecasting using a statistical learning technique[J]. Res. Astron. Astrophys., 2010, 10(8):785-796
    [17]
    AHMED O W, QAHWAJI R, COLAK T, et al. Solar flare prediction using advanced feature extraction, machine learning, and feature selection[J]. Solar Phys., 2013, 283(1):157-175
    [18]
    LI R, HE H, CUI Y M, et al. Support vector machine combined with K-nearest neighbors for solar flare forecast[J]. Chin. J. Astron. Astrophys., 2007, 7(3):441-447
    [19]
    LI R, WANG H N, HUANG X, et al. Solar flare forecasting using learning vector quantity and unsupervised clustering techniques[J]. Sci. China Phys. Mech. Astron., 2011, 54(8):1546-1552
    [20]
    WANG H N, CUI Y M, LI R, et al. Solar flare forecasting model supported with artificial neural network techniques[J]. Adv. Space Res., 2007, 42(9):1464-1468
    [21]
    YU D R, HUANG X, WANG H N, et al. Short-term solar flare prediction using a sequential supervised learning method[J]. Solar Phys., 2009, 255(1):91-105
    [22]
    HUANG X, YU D, HU Q, et al. Short-term solar flare prediction using predictor teams[J]. Solar Phys., 2010, 263:175-184
    [23]
    HUANG X, WANG H N. Solar flare prediction using highly stressed longitudinal magnetic field parameters[J]. Res. Astron. Astrophys., 2013, 13:351-358
    [24]
    ZHARKOVA V V, ABOUDARHAM J, ZHARKOV S, et al. Solar feature catalogues in egso[J]. Solar Phys., 2005, 228:361-375
    [25]
    CURTO J J, BLANCA M, MARTINEZ E. Automatic sunspots detection on full-disk solar images using mathematical morphology[J]. Solar Phys., 2008, 250(2):411-429
    [26]
    DJAFER D, IRBAH A, MEFTAH M. Identification of sunspots on full-disk solar images using wavelet analysis[J]. Solar Phys., 2012, 281(2):863-875
    [27]
    COLAK T, QAHWAJI R. Automated mcintosh-based classification of sunspot groups using MDI images[J]. Solar Phys., 2008, 248(2):277-296
    [28]
    SCHERRER P H, SCHOU J, BUSH R I, et al. The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO)[J]. Solar Phys., 2012, 275:207-227
    [29]
    BOBRA M G, COUVIDAT S. The Helioseismic and Magnetic Imager (HMI) vector magnetic field pipeline: SHARPs-Space-Weather HMI active region patches[J]. Solar Phys., 2014, 289:3549-3578
    [30]
    FLORIOS K, KONTOGIANNIS I, PARK S H, et al. Forecasting solar flares using magnetogram-based predictors and machine learning[J]. Solar Phys., 2018, 293(2):28
    [31]
    LIU C, DENG N, WANG J T, et al. Predicting solar flares using SDO/HMI vector magnetic data products and the random forest algorithm[J]. Astrophys. J., 2017, 843(2):104
    [32]
    LIU H, LIU C, WANG J T, et al. Predicting solar flares using a long short-term memory network[J]. Astrophys. J., 2019, 877:121
    [33]
    NISHIZUKA N, SUGIURA K, KUBO Y, et al. Deep Flare Net (DeFN) model for solar flare prediction[J]. Astrophys. J., 2018, 858(2):113
    [34]
    HUANG X, WANG H, XU L, et al. Deep learning based solar flare forecasting model. I. results for line-of-sight magnetograms[J]. Astrophys. J., 2018, 856(7):11
    [35]
    FANG Y H, CUI Y M, AO X Z. Deep learning for automatic recognition of magnetic type in sunspot groups[J]. Adv. Astron., 2019, 123:1-10
    [36]
    LI L, CUI Y M, LEI L, et al. Automatic detection of sunspots and extraction of sunspot characteristic parameters[J]. Chin. J. Space Sci., 2020, 40(3):315-322(李泠, 崔延美, 雷蕾, 等. 太阳黑子自动识别与特征参量自动提取的研究[J]. 空间科学学报, 2020, 40(3):315-322)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(815) PDF Downloads(74) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return