Citation: | CUI Yanmei, LIU Siqing, SHI Liqin. Automatic Recognition of Solar Active Regions Based on Real-time SDO/HMI Full Disk Magnetograms[J]. Chinese Journal of Space Science, 2021, 41(3): 402-410. doi: 10.11728/cjss2021.03.402 |
[1] |
ZHANG J, WANG Y M, LIU Y. Statistical properties of solar active regions obtained from an automatic detection system and the computational biases[J]. Astrophys. J., 2010, 723:1006-1018
|
[2] |
MCINTOSH P. The classification of sunspot groups[J]. Solar Phys., 1990, 125:251-267
|
[3] |
ATAC T. Statistical relationship between sunspots and major flares[J]. Astrophys. Space Sci., 1987, 129:203-208
|
[4] |
WANG H. Evolution of vector magnetic fields and the August 271990 X-3 flare[J]. Solar Phys., 1992, 140:85-98
|
[5] |
WANG T J, XU A, ZHANG H Q. Evolution of vector magnetic fields and vertical currents and their relationship with solar flares in AR 5747[J]. Solar Phys., 1994, 155:99-122
|
[6] |
WANG J, SHI Z, WANG H, et al. Flares and the magnetic nonpotentiality[J]. Astrophys. J., 1996, 456:861-878
|
[7] |
BAO S D, ZHANG H Q, AI G X, et al. A survey of flares and current helicity in active regions[J]. Astron. Astrophys. Suppl. Ser., 1999, 139(2):311-320
|
[8] |
ZHANG H Q. Electric current and magnetic shear in solar active regions[J]. Astrophys. J., 2001, 557(1):L71-L74
|
[9] |
CUI Y, LI R, ZHANG L, et al. Correlation between solar flare productivity and photospheric magnetic field properties[J]. Solar Phys., 2006, 237(1):45-59
|
[10] |
LEKA K D, BARNES G. Photospheric magnetic field properties of flaring versus flare-quiet active regions. I. Data general approach and sample results[J]. Astrophys. J., 2003, 595:1277-1295
|
[11] |
LEKA K D, BARNES G. Photospheric magnetic field properties of flaring versus flare-quiet active regions. I!I. Discriminant analysis[J]. Astophys.J., 2003, 595:1296-1306
|
[12] |
CUI Yanmei, WANG Haimin, XU Yan, et al. Statistical study of magnetic topology for eruptive and confined solar flares[J]. J. Geophys. Res.: Space Phys., 2018, 123(3):1704-1714
|
[13] |
QAHWAJI R, COLAK T. Automatic short-term solar flare prediction using machine learning and sunspot associations[J]. Solar Phys., 2007, 241:195-211
|
[14] |
NÚÑEZ M, FIDALGO R, BAENA M, et al. The influence of active region information on the prediction of solar flares: an empirical model using data mining[J]. Ann. Geophys., 2005, 23(9):3129-3138
|
[15] |
SONG H, TAN C, JING J, et al. Statistical assessment of photospheric magnetic features in imminent solar flare predictions[J]. Solar Phys., 2008, 254(1):101-125
|
[16] |
YUAN Y, SHIH F Y, JING J, et al. Automated flare forecasting using a statistical learning technique[J]. Res. Astron. Astrophys., 2010, 10(8):785-796
|
[17] |
AHMED O W, QAHWAJI R, COLAK T, et al. Solar flare prediction using advanced feature extraction, machine learning, and feature selection[J]. Solar Phys., 2013, 283(1):157-175
|
[18] |
LI R, HE H, CUI Y M, et al. Support vector machine combined with K-nearest neighbors for solar flare forecast[J]. Chin. J. Astron. Astrophys., 2007, 7(3):441-447
|
[19] |
LI R, WANG H N, HUANG X, et al. Solar flare forecasting using learning vector quantity and unsupervised clustering techniques[J]. Sci. China Phys. Mech. Astron., 2011, 54(8):1546-1552
|
[20] |
WANG H N, CUI Y M, LI R, et al. Solar flare forecasting model supported with artificial neural network techniques[J]. Adv. Space Res., 2007, 42(9):1464-1468
|
[21] |
YU D R, HUANG X, WANG H N, et al. Short-term solar flare prediction using a sequential supervised learning method[J]. Solar Phys., 2009, 255(1):91-105
|
[22] |
HUANG X, YU D, HU Q, et al. Short-term solar flare prediction using predictor teams[J]. Solar Phys., 2010, 263:175-184
|
[23] |
HUANG X, WANG H N. Solar flare prediction using highly stressed longitudinal magnetic field parameters[J]. Res. Astron. Astrophys., 2013, 13:351-358
|
[24] |
ZHARKOVA V V, ABOUDARHAM J, ZHARKOV S, et al. Solar feature catalogues in egso[J]. Solar Phys., 2005, 228:361-375
|
[25] |
CURTO J J, BLANCA M, MARTINEZ E. Automatic sunspots detection on full-disk solar images using mathematical morphology[J]. Solar Phys., 2008, 250(2):411-429
|
[26] |
DJAFER D, IRBAH A, MEFTAH M. Identification of sunspots on full-disk solar images using wavelet analysis[J]. Solar Phys., 2012, 281(2):863-875
|
[27] |
COLAK T, QAHWAJI R. Automated mcintosh-based classification of sunspot groups using MDI images[J]. Solar Phys., 2008, 248(2):277-296
|
[28] |
SCHERRER P H, SCHOU J, BUSH R I, et al. The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO)[J]. Solar Phys., 2012, 275:207-227
|
[29] |
BOBRA M G, COUVIDAT S. The Helioseismic and Magnetic Imager (HMI) vector magnetic field pipeline: SHARPs-Space-Weather HMI active region patches[J]. Solar Phys., 2014, 289:3549-3578
|
[30] |
FLORIOS K, KONTOGIANNIS I, PARK S H, et al. Forecasting solar flares using magnetogram-based predictors and machine learning[J]. Solar Phys., 2018, 293(2):28
|
[31] |
LIU C, DENG N, WANG J T, et al. Predicting solar flares using SDO/HMI vector magnetic data products and the random forest algorithm[J]. Astrophys. J., 2017, 843(2):104
|
[32] |
LIU H, LIU C, WANG J T, et al. Predicting solar flares using a long short-term memory network[J]. Astrophys. J., 2019, 877:121
|
[33] |
NISHIZUKA N, SUGIURA K, KUBO Y, et al. Deep Flare Net (DeFN) model for solar flare prediction[J]. Astrophys. J., 2018, 858(2):113
|
[34] |
HUANG X, WANG H, XU L, et al. Deep learning based solar flare forecasting model. I. results for line-of-sight magnetograms[J]. Astrophys. J., 2018, 856(7):11
|
[35] |
FANG Y H, CUI Y M, AO X Z. Deep learning for automatic recognition of magnetic type in sunspot groups[J]. Adv. Astron., 2019, 123:1-10
|
[36] |
LI L, CUI Y M, LEI L, et al. Automatic detection of sunspots and extraction of sunspot characteristic parameters[J]. Chin. J. Space Sci., 2020, 40(3):315-322(李泠, 崔延美, 雷蕾, 等. 太阳黑子自动识别与特征参量自动提取的研究[J]. 空间科学学报, 2020, 40(3):315-322)
|