Volume 42 Issue 4
Aug.  2022
Turn off MathJax
Article Contents
CAO Jinbin, YANG Junying. Magnetospheric Physics in China: 2020–2021. Chinese Journal of Space Science, 2022, 42(4): 628-652 doi: 10.11728/cjss2022.04.yg12
Citation: CAO Jinbin, YANG Junying. Magnetospheric Physics in China: 2020–2021. Chinese Journal of Space Science, 2022, 42(4): 628-652 doi: 10.11728/cjss2022.04.yg12

Magnetospheric Physics in China: 2020–2021

doi: 10.11728/cjss2022.04.yg12
More Information
  • Author Bio:

    E-mail: jbcao@buaa.edu.cn

  • Received Date: 2022-05-27
  • Accepted Date: 2022-05-27
  • Available Online: 2022-06-23
  • In the past two years, many progresses were made in magnetospheric physics by the data of OMNI, SuperMAG networks, Double Star Program, Cluster, THEMIS, RBSP, DMSP, DEMETER, NOAA, Van Allen Probes, GOES, Geotail, Swarm, MMS, BeiDa, Fengyun, ARTEMIS, MESSENGER, Juno, Chinese Mars ROVER, MAVEN, Tianwen-1, Venus Express, Lunar Prospector e.g., or by computer simulations. This paper briefly reviews these works based on 356 papers published from January 2020 to December 2021. The subjects covered various sub-branches of Magnetospheric Physics, including solar wind-magnetosphere-ionosphere interaction, inner magnetosphere, outer magnetosphere, magnetic reconnection, planetary magnetosphere.

     

  • loading
  • [1]
    ZHAO M X, LE G M, LI Q, et al. Dependence of great geomagnetic storm (△SYM-H ≤–200 nT) on associated solar wind parameters[J]. Solar Physics, 2021, 296(4): 66 doi: 10.1007/s11207-021-01816-2
    [2]
    LE G M, LIU G A, ZHAO M X. Dependence of major geomagnetic storm intensity (Dst ≤–100 nt) on associated solar wind parameters[J]. Solar Physics, 2020, 295(8): 108 doi: 10.1007/s11207-020-01675-3
    [3]
    XUE Z X, YUAN Z G, YU X D. Prompt emergence and disappearance of emic waves driven by the sequentially enhanced solar wind dynamic pressure[J]. Geophysical Research Letters, 2021, 48(2): e2020GL091479 doi: 10.1029/2020gl091479
    [4]
    PENG Q S, LI H M, TANG R X, et al. Variation of dayside chorus waves associated with solar wind dynamic pressure based on MMS observations[J]. Advances in Space Research, 2020, 65(11): 2551-2558 doi: 10.1016/j.asr.2020.03.006
    [5]
    SHANG X J, LIU S, CHEN L J, et al. ULF-modulation of whistler-mode waves in the inner magnetosphere during solar wind compression[J]. Journal of Geophysical Research: Space Physics, 2021, 126(8): e2021JA029353 doi: 10.1029/2021ja029353
    [6]
    XIANG Z, LI X L, KAPALI S, et al. Modeling the dynamics of radiation belt electrons with source and loss driven by the solar wind[J]. Journal of Geophysical Research: Space Physics, 2021, 126(6): e2020JA028988 doi: 10.1029/2020ja028988
    [7]
    MA X H, ZONG Q G, YUE C, et al. Energetic electron enhancement and dropout echoes induced by solar wind dynamic pressure decrease: the effect of phase space density profile[J]. Journal of Geophysical Research: Space Physics, 2021, 126(3): e2020JA028863 doi: 10.1029/2020ja028863
    [8]
    MA X, XIANG Z, NI B B, et al. On the loss mechanisms of radiation belt electron dropouts during the 12 September 2014 geomagnetic storm[J]. Earth and Planetary Physics, 2020, 4(6): 598-610 doi: 10.26464/epp2020060
    [9]
    SHI Q Q, SHEN X C, TIAN A M, et al. Magnetosphere response to solar wind dynamic pressure change: vortices, ULF waves, and aurorae[M]//ZENG Q G, ESCOUBET P, SIBECK D, et al. Dayside Magnetosphere Interactions. Washington: American Geophysical Union, 2020: 77-97
    [10]
    ZHAO J Y, SHI Q Q, TIAN A M, et al. Vortex generation and auroral response to a solar wind dynamic pressure increase: event analyses[J]. Journal of Geophysical Research: Space Physics, 2021, 126(3): e2020JA028753 doi: 10.1029/2020ja028753
    [11]
    ZOU Z Y, ZUO P B, NI B B, et al. Two-step dropouts of radiation belt electron phase space density induced by a magnetic cloud event[J]. The Astrophysical Journal Letters, 2020, 895(1): L24 doi: 10.3847/2041-8213/ab9179
    [12]
    LI H M, PENG Q S, TANG R X, et al. Statistical characteristics of electron pitch angle distributions inside the magnetopause based on MMS observations[J]. Journal of Geophysical Research: Space Physics, 2020, 125(10): e2020JA028291 doi: 10.1029/2020ja028291
    [13]
    YUE C, BORTNIK J, ZOU S S, et al. Episodic occurrence of field-aligned energetic ions on the dayside[J]. Geophysical Research Letters, 2020, 47(2): e2019GL086384 doi: 10.1029/2019gl086384
    [14]
    NI B B, YAN L, FU S, et al. Distinct formation and evolution characteristics of outer radiation belt electron butterfly pitch angle distributions observed by Van Allen probes[J]. Geophysical Research Letters, 2020, 47(4): e2019GL086487 doi: 10.1029/2019gl086487
    [15]
    XIANG Z, LI X L, TEMERIN M A, et al. On energetic electron dynamics during geomagnetic quiet times in Earth’s inner radiation belt due to atmospheric collisional loss and CRAND as a source[J]. Journal of Geophysical Research: Space Physics, 2020, 125(2): e2019JA027678 doi: 10.1029/2019ja027678
    [16]
    CHEN J J, LEI J H, WANG W B, et al. Ionospheric electrodynamic response to solar flares in September 2017[J]. Journal of Geophysical Research: Space Physics, 2021, 126(11): e2021JA029745 doi: 10.1029/2021ja029745
    [17]
    CHENG L B, LE G M, ZHAO M X. Sun-Earth connection event of super geomagnetic storm on 2001 March 31: the importance of solar wind density[J]. Research in Astronomy and Astrophysics, 2020, 20(3): 036 doi: 10.1088/1674-4527/20/3/36
    [18]
    CAI Y H, WANG W B, ZHANG S R, et al. Climatology analysis of the daytime topside ionospheric diffusive O+ flux based on incoherent scatter radar observations at millstone hill[J]. Journal of Geophysical Research: Space Physics, 2021, 126(10): e2021JA029222 doi: 10.1029/2021ja029222
    [19]
    ZENG C, WANG C, DUAN S P, et al. Statistical study of oxygen ions abundance and spatial distribution in the dayside magnetopause boundary layer: MMS observations[J]. Journal of Geophysical Research: Space Physics, 2020, 125(7): e2019JA027323 doi: 10.1029/2019ja027323
    [20]
    CHEN A, YUE C, CHEN H F, et al. Ring current decay during geomagnetic storm recovery phase: comparison between RBSP observations and theoretical modeling[J]. Journal of Geophysical Research: Space Physics, 2021, 126(1): e2020JA028500 doi: 10.1029/2020ja028500
    [21]
    HUANG Z, YUAN Z G, YU X D. Evolutions of equatorial ring current ions during a magnetic storm[J]. Earth and Planetary Physics, 2020, 4(2): 131-137 doi: 10.26464/epp2020019
    [22]
    GU X D, LI G J, PANG H, et al. Statistical analysis of very low frequency atmospheric noise caused by the global lightning using ground-based observations in China[J]. Journal of Geophysical Research: Space Physics, 2021, 126(6): e2020JA029101 doi: 10.1029/2020ja029101
    [23]
    GUO M Y, ZHOU Q H, XIAO F L, et al. Upward propagation of lightning-generated whistler waves into the radiation belts[J]. Science China Technological Sciences, 2020, 63(2): 243-248 doi: 10.1007/s11431-018-9486-9
    [24]
    LI L Y, ZHOU S P, WEI S H, et al. The day-night difference and geomagnetic activity variation of energetic electron fluxes in region of South Atlantic anomaly[J]. Space Weather, 2020, 18(9): e2020SW002479 doi: 10.1029/2020sw002479
    [25]
    CHEN G, LI Y X, ZHANG S D, et al. Multi-instrument observations of the atmospheric and ionospheric response to the 2013 sudden stratospheric warming over Eastern Asia region[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(2): 1232-1243 doi: 10.1109/tgrs.2019.2944677
    [26]
    ZHANG K D, WANG H, YAMAZAKI Y, et al. Effects of subauroral polarization streams on the equatorial electrojet during the geomagnetic storm on June 1, 2013[J]. Journal of Geophysical Research: Space Physics, 2021, 126(10): e2021JA029681 doi: 10.1029/2021ja029681
    [27]
    ZHOU Y J, HE F, ZHANG X X, et al. Statistical characteristics of giant undulations during geomagnetic storms[J]. Geophysical Research Letters, 2021, 48(13): e2021GL093098 doi: 10.1029/2021gl093098
    [28]
    HE F, GUO R L, DUNN W R, et al. Plasmapause surface wave oscillates the magnetosphere and diffuse aurora[J]. Nature Communications, 2020, 11(1): 1668 doi: 10.1038/s41467-020-15506-3
    [29]
    WANG Yuyouting, ZHANG Xiaoxin, HE Fei, et al. A statistical analysis of the electron number density fluctuations near the plasmapause based on Van Allen Probes observations[J]. Chinese Journal of Geophysics, 2020, 63(6): 2141-2148 doi: 10.6038/cjg2020O0096
    [30]
    LI H M, FU T X, TANG R X, et al. Statistical study and corresponding evolution of plasmaspheric plumes under different levels of geomagnetic storms[J]. Annales Geophysicae, 2022, 40(2): 167-177 doi: 10.5194/angeo-40-167-2022
    [31]
    WANG Y B, KISTLER L M, MOUIKIS C G, et al. Formation of the low-energy “finger” ion spectral structure near the inner edge of the plasma sheet[J]. Geophysical Research Letters, 2020, 47(22): e2020GL089875 doi: 10.1029/2020gl089875
    [32]
    REN G M, CAO J B, YANG J, et al. The response of plasma parameters and energy transport in the plasma sheet to interplanetary magnetic field Bz[J]. Science China Technological Sciences, 2021, 64(7): 1528-1534 doi: 10.1007/s11431-020-1744-9
    [33]
    ZONG Q G, YUE C, FU S Y. Shock induced strong substorms and super substorms: preconditions and associated oxygen ion dynamics[J]. Space Science Reviews, 2021, 217(2): 33 doi: 10.1007/s11214-021-00806-x
    [34]
    DUAN S P, WANG C, LIU W W, et al. Characteristics of magnetic dipolarizations in the vicinity of the substorm onset region observed by themis[J]. Earth and Planetary Physics, 2021, 5(3): 239-250 doi: 10.26464/epp2021031
    [35]
    FU H B, YUE C, ZONG Q G, et al. Statistical characteristics of substorms with different intensity[J]. Journal of Geophysical Research: Space Physics, 2021, 126(8): e2021JA029318 doi: 10.1029/2021ja029318
    [36]
    TANG B B, LI W Y, WANG C, et al. Secondary magnetic reconnection at Earth’s flank magnetopause[J]. Frontiers in Astronomy and Space Sciences, 2021, 8: 740560 doi: 10.3389/fspas.2021.740560
    [37]
    YU C, ZHANG X X, WANG W B, et al. Longitudinal dependence of ionospheric Poynting flux in the northern hemisphere during quite times[J]. Journal of Geophysical Research: Space Physics, 2021, 126(10): e2021JA029717
    [38]
    ZHOU X Z, ZHANG X, LI J H, et al. On the species dependence of ion escapes across the magnetopause[J]. Geophysical Research Letters, 2021, 48(8): e2021GL093115 doi: 10.1029/2021gl093115
    [39]
    JANG E J, YUE C, ZONG Q G, et al. The effect of non-storm time substorms on the ring current dynamics[J]. Earth and Planetary Physics, 2021, 5(3): 251-258 doi: 10.26464/epp2021032
    [40]
    YI J, FU S, NI B B, et al. Global distribution of reversed energy spectra of ring current protons based on van Allen probes observations[J]. Geophysical Research Letters, 2021, 48(4): e2020GL091559 doi: 10.1029/2020gl091559
    [41]
    WANG L H, ZONG Q G, SHI Q Q, et al. Solar energetic electrons entering the Earth’s cusp/lobe[J]. The Astrophysical Journal, 2021, 910(1): 12 doi: 10.3847/1538-4357/abdb2b
    [42]
    GUO J, LU S, LU Q M, et al. Three-dimensional global hybrid simulations of high latitude magnetopause reconnection and flux ropes during the northward IMF[J]. Geophysical Research Letters, 2021, 48(21): e2021GL095003 doi: 10.1029/2021gl095003
    [43]
    XIAO Chao, LIU Wenlong, ZHANG Dianjun, et al. Formation of the high-density cusp[J]. Chinese Journal of Geophysics, 2020, 63(9): 3231-3239 doi: 10.6038/cjg2020N0424
    [44]
    XIAO C, LIU W L, ZHANG D J, et al. A normalized statistical study of Earth’s cusp region based on nine years of Cluster measurements[J]. Earth and Planetary Physics, 2020, 4(3): 266-273 doi: 10.26464/epp2020031
    [45]
    XUE Z X, YUAN Z G, YU X D, et al. Formation of the mass density peak at the magnetospheric equator triggered by EMIC waves[J]. Earth and Planetary Physics, 2021, 5(1): 32-41 doi: 10.26464/epp2021008
    [46]
    YAO J S, ZHAO Y K, YE D F, et al. A simulation study of protons heated by left/right-handed Alfvén waves generated by electromagnetic proton-proton instability[J]. Plasma Science and Technology, 2021, 23(12): 125301 doi: 10.1088/2058-6272/ac11b0
    [47]
    QIN P F, GE Y S, DU A M, et al. Coupling between the magnetospheric dipolarization front and the Earth’s ionosphere by ultralow-frequency waves[J]. The Astrophysical Journal Letters, 2020, 895(1): L13 doi: 10.3847/2041-8213/ab8e48
    [48]
    CHEN Y Q, WU M, ZHANG T L, et al. Statistical characteristics of field-aligned currents in the plasma sheet boundary layer[J]. Journal of Geophysical Research: Space Physics, 2021, 126(2): e2020JA028319 doi: 10.1029/2020ja028319
    [49]
    ZHU Guangzhen, MA Yuduan. Enhancement of field-aligned current during the azimuthal flow in the near-earth magnetotail[J]. Chinese Journal of Space Science, 2020, 40(4): 493-504
    [50]
    NOWADA M, ZONG Q G, HUBERT B, et al. North-south asymmetric nightside distorted transpolar arcs within a framework of deformed magnetosphere-ionosphere coupling: IMF-By dependence, ionospheric currents, and magnetotail reconnection[J]. Journal of Geophysical Research: Space Physics, 2020, 125(10): 2020JA027991 doi: 10.1029/2020ja027991
    [51]
    MA Y Z, ZHANG Q H, JAYACHANDRAN P T, et al. Statistical study of the relationship between ion upflow and field-aligned current in the topside ionosphere for both hemispheres during geomagnetic disturbed and quiet time[J]. Journal of Geophysical Research: Space Physics, 2020, 125(9): e2019JA027538 doi: 10.1029/2019ja027538
    [52]
    YUAN H Z, ZHANG H, LU J Y, et al. Flow vortex-associated downward field-aligned current retreating in the near-earth plasma sheet[J]. Earth and Space Science, 2020, 7(2): e2019EA000916 doi: 10.1029/2019ea000916
    [53]
    YAO S T, SHI Q Q, GUO R L, et al. Kinetic-scale flux rope in the magnetosheath boundary layer[J]. The Astrophysical Journal, 2020, 897(2): 137 doi: 10.3847/1538-4357/ab9620
    [54]
    PITKÄNEN T, KULLEN A, CAI L, et al. Asymmetry in the Earth’s magnetotail neutral sheet rotation due to IMF By sign?[J]. Geoscience Letters, 2021, 8(1): 3 doi: 10.1186/s40562-020-00171-7
    [55]
    WANG G Q, ZHANG T L, WU M Y, et al. Field-aligned currents originating from the chaotic motion of electrons in the tilted current sheet: MMS observations[J]. Geophysical Research Letters, 2021, 48(9): e2020GL088841 doi: 10.1029/2020gl088841
    [56]
    PARK J S, SHI Q Q, NOWADA M, et al. Transpolar arcs during a prolonged radial interplanetary magnetic field interval[J]. Journal of Geophysical Research: Space Physics, 2021, 126(6): e2021JA029197 doi: 10.1029/2021ja029197
    [57]
    TANG T, YANG J, SHI Q Q, et al. The semiannual variation of transpolar arc incidence and its relationship to the Russell-McPherron effect[J]. Earth and Planetary Physics, 2020, 4(6): 619-626 doi: 10.26464/epp2020066
    [58]
    ZHANG Q H, ZHANG Y L, WANG C, et al. Multiple transpolar auroral arcs reveal insight about coupling processes in the Earth’s magnetotail[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(28): 16193-16198 doi: 10.1073/pnas.2000614117
    [59]
    MA Y Z, ZHANG Q H, LYONS L R, et al. Is westward travelling surge driven by the polar cap flow channels?[J]. Journal of Geophysical Research: Space Physics, 2021, 126(8): e2020JA028498
    [60]
    LI K, FÖRSTER M, RONG Z J, et al. The polar wind modulated by the spatial inhomogeneity of the strength of the earth's magnetic field[J]. Journal of Geophysical Research: Space Physics, 2020, 125(4): e2020JA027802 doi: 10.1029/2020ja027802
    [61]
    ZHANG D, ZHANG Q H, MA Y Z, et al. Solar and geomagnetic activity impact on occurrence and spatial size of cold and hot polar cap patches[J]. Geophysical Research Letters, 2021, 48(18): e2021GL094526 doi: 10.1029/2021gl094526
    [62]
    ZHANG Q H, XING Z Y, WANG Y, et al. Formation and evolution of polar cap ionospheric patches and their associated upflows and scintillations: a review[M]//ZONG Q G, ESCOUBET P, SIBECK D, et al. Dayside Magnetosphere Interactions. Washington: American Geophysical Union, 2020: 285-302.
    [63]
    ZHANG S, LIU S, LI W T, et al. A concise empirical formula for the field-aligned distribution of auroral kilometric radiation based on arase satellite and Van Allen probes[J]. Geophysical Research Letters, 2021, 48(8): e2021GL092805 doi: 10.1029/2021gl092805
    [64]
    ZHANG S, SHANG X J, HE Y H, et al. Dominant roles of high harmonics on interactions between AKR and radiation belt relativistic electrons[J]. Geophysical Research Letters, 2020, 47(16): e2020GL088421 doi: 10.1029/2020gl088421
    [65]
    FUJIMOTO K, SYDORA R D. Electromagnetic turbulence in the electron current layer to drive magnetic reconnection[J]. The Astrophysical Journal Letters, 2021, 909(1): L15 doi: 10.3847/2041-8213/abe877
    [66]
    FUJIMOTO K, CAO J B. Non-adiabatic electron heating in the magnetic islands during magnetic reconnection[J]. Geophysical Research Letters, 2021, 48(19): e2021GL094431 doi: 10.1029/2021gl094431
    [67]
    HUANG S Y, XIONG Q Y, YUAN Z G, et al. Multi-spacecraft measurement of anisotropic spatial correlation functions at kinetic range in the magnetosheath turbulence[J]. Journal of Geophysical Research: Space Physics, 2021, 126(5): e2020JA028780 doi: 10.1029/2020ja028780
    [68]
    ZHOU G, HE H Q. The solar-cycle variations of the anisotropy of Taylor scale and correlation scale in the solar wind turbulence[J]. The Astrophysical Journal Letters, 2021, 911(1): L2 doi: 10.3847/2041-8213/abef00
    [69]
    ZHOU G, HE H Q, WAN W. Effects of solar activity on Taylor scale and correlation scale in solar wind magnetic fluctuations[J]. The Astrophysical Journal Letters, 2020, 899(2): L32 doi: 10.3847/2041-8213/abaaa9
    [70]
    YUE C, LIU Y, ZHOU X Z, et al. MLT-dependence of sustained spectral gaps of proton and oxygen in the inner magnetosphere[J]. Journal of Geophysical Research: Space Physics, 2021, 126(12): e2021JA029935 doi: 10.1029/2021ja029935
    [71]
    YUE C, ZHOU X Z, BORTNIK J, et al. Sustained oxygen spectral gaps and their dynamic evolution in the inner magnetosphere[J]. Journal of Geophysical Research: Space Physics, 2021, 126(4): e2020JA029092 doi: 10.1029/2020ja029092
    [72]
    ZHAO X X, HAO Y X, ZONG Q G, et al. Origin of electron boomerang stripes: Localized ULF wave-particle interactions[J]. Geophysical Research Letters, 2020, 47(17): e2020GL087960 doi: 10.1029/2020gl087960
    [73]
    ZHOU X Z, REN J, YANG F, et al. On the formation of wedge-like ion spectral structures in the nightside inner magnetosphere[J]. Journal of Geophysical Research: Space Physics, 2020, 125(12): e2020JA028420 doi: 10.1029/2020ja028420
    [74]
    REN J, ZONG Q G, YUE C, et al. Simultaneously formed wedge‐like structures of different ion species deep in the inner magnetosphere[J]. Journal of Geophysical Research: Space Physics, 2020, 125(12): e2020JA028192
    [75]
    LI S Y, LUO H, KRONBERG E A, et al. Stationary “nose-like” ion spectral structures in the inner magnetosphere: observations by van Allen probes and simulations[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2020, 211: 105390 doi: 10.1016/j.jastp.2020.105390
    [76]
    REN J, ZHOU X Z, ZONG Q G, et al. The link between wedge-like and nose-like ion spectral structures in the inner magnetosphere[J]. Geophysical Research Letters, 2021, 48(13): e2021GL093930 doi: 10.1029/2021gl093930
    [77]
    LIU Yangxizi, XIANG Zheng, GUO Jianguang, et al. Scattering effect of very low frequency transmitter signals on energetic electrons in earth's inner belt and slot region[J]. Acta Physica Sinica, 2021, 70(14): 149401 doi: 10.7498/aps.70.20202029
    [78]
    XIANG Zheng, LIN Xianhao, CHEN Wei, et al. Global morphology of NWC and NAA very-low-frequency transmitter signals in the inner magnetosphere: a survey using van Allen probes EMFISIS measurements[J]. Chinese Journal of Geophysics, 2021, 64(11): 3860-3869 doi: 10.6038/cjg2021P0131
    [79]
    HUA M, LI W, NI B B, et al. Very-low-frequency transmitters bifurcate energetic electron belt in near-earth space[J]. Nature Communications, 2020, 11(1): 4847 doi: 10.1038/s41467-020-18545-y
    [80]
    HUA M, NI B B, LI W, et al. Statistical distribution of bifurcation of Earth’s inner energetic electron belt at tens of keV[J]. Geophysical Research Letters, 2021, 48(3): e2020GL091242 doi: 10.1029/2020gl091242
    [81]
    GAO Z L, SHANG X J, ZUO P B, et al. Lag-correlated rising tones of electron cyclotron harmonic and whistler-mode upper-band chorus waves[J]. Physics of Plasmas, 2020, 27(6): 062903 doi: 10.1063/5.0008812
    [82]
    GAO Z L, ZUO P B, FENG X S, et al. Evidence of nonlinear interactions between magnetospheric electron cyclotron harmonic waves[J]. Geophysical Research Letters, 2020, 47(16): e2020GL088452 doi: 10.1029/2020gl088452
    [83]
    WU Y F, TAO X, LIU X, et al. Particle-in-cell simulation of electron cyclotron harmonic waves driven by a loss cone distribution[J]. Geophysical Research Letters, 2020, 47(9): e2020GL087649 doi: 10.1029/2020gl087649
    [84]
    LOU Y Q, CAO X, NI B B, et al. Diffuse auroral electron scattering by electrostatic electron cyclotron harmonic waves in the dayside magnetosphere[J]. Geophysical Research Letters, 2021, 48(5): e2020GL092208 doi: 10.1029/2020gl092208
    [85]
    TENG S, WU Y, GUO R, et al. Observation of periodic rising and falling tone ECH waves at saturn[J]. Geophysical Research Letters, 2021, 48(15): e2021GL094559 doi: 10.1029/2021gl094559
    [86]
    CHEN R, GAO X L, LU Q M, et al. In situ observations of whistler-mode chorus waves guided by density ducts[J]. Journal of Geophysical Research: Space Physics, 2021, 126(4): e2020JA028814 doi: 10.1029/2020ja028814
    [87]
    KE Y G, CHEN L J, GAO X L, et al. Whistler-mode waves trapped by density irregularities in the Earth’s magnetosphere[J]. Geophysical Research Letters, 2021, 48(7): e2020GL092305 doi: 10.1029/2020gl092305
    [88]
    ZHANG H, ZHONG Z H, TANG R X, et al. Modulation of whistler mode waves by ultra-low frequency wave in a macroscale magnetic hole: MMS observations[J]. Geophysical Research Letters, 2021, 48(22): e2021GL096056 doi: 10.1029/2021gl096056
    [89]
    ZHAO D, FU S Y, PARKS G K, et al. Modulation of whistler mode waves by ion-scale waves observed in the distant magnetotail[J]. Journal of Geophysical Research: Space Physics, 2020, 125(2): e2019JA027278 doi: 10.1029/2019ja027278
    [90]
    CHEN R, GAO X L, LU Q M, et al. Observational evidence for whistler mode waves guided/ducted by the inner and outer edges of the plasmapause[J]. Geophysical Research Letters, 2021, 48(6): e2021GL092652 doi: 10.1029/2021gl092652
    [91]
    LU Q M, CHEN L J, WANG X Y, et al. Repetitive emissions of rising-tone chorus waves in the inner magnetosphere[J]. Geophysical Research Letters, 2021, 48(15): e2021GL094979 doi: 10.1029/2021gl094979
    [92]
    WU Y F, TAO X, ZONCA F, et al. Controlling the chirping of chorus waves via magnetic field inhomogeneity[J]. Geophysical Research Letters, 2020, 47(10): e2020GL087791 doi: 10.1029/2020gl087791
    [93]
    KE Y G, LU Q M, GAO X L, et al. Particle-in-cell simulations of characteristics of rising-tone chorus waves in the inner magnetosphere[J]. Journal of Geophysical Research: Space Physics, 2020, 125(7): e2020JA027961 doi: 10.1029/2020ja027961
    [94]
    CHEN H Y, GAO X L, LU Q M, et al. Gap formation around 0.5 Ωe of whistler‐mode waves excited by electron temperature anisotropy[J]. Journal of Geophysical Research: Space Physics, 2021, 126(2): e2020JA028631
    [95]
    CHEN H Y, SAUER K, LU Q M, et al. Two-band whistler-mode waves excited by an electron bi-Maxwellian distribution plus parallel beams[J]. AIP Advances, 2020, 10(12): 125010 doi: 10.1063/5.0026220
    [96]
    TAO X, ZONCA F, CHEN L, et al. Theoretical and numerical studies of chorus waves: a review[J]. Science China Earth Sciences, 2020, 63(1): 78-92 doi: 10.1007/s11430-019-9384-6
    [97]
    XIE Y, TENG S C, WU Y F, et al. A statistical analysis of duration and frequency chirping rate of falling tone chorus[J]. Geophysical Research Letters, 2021, 48(19): e2021GL095349 doi: 10.1029/2021gl095349
    [98]
    LIU S, GAO Z L, XIAO F L, et al. Observation of unusual chorus elements by van Allen probes[J]. Journal of Geophysical Research: Space Physics, 2021, 126(7): e2021JA029258 doi: 10.1029/2021ja029258
    [99]
    CHENG X W, GU X D, NI B B, et al. Hemispheric distribution of lower-band chorus waves observed by van Allen probes[J]. Chinese Journal of Space Science, 2020, 40(2): 186-196
    [100]
    TAO X, ZONCA F, CHEN L. A “ trap-release-amplify” model of chorus waves[J]. Journal of Geophysical Research: Space Physics, 2021, 126(9): e2021JA029585 doi: 10.1029/2021ja029585
    [101]
    LIU Z Y, ZONG Q G, BLAKE J B. On phase space density and its radial gradient of outer radiation belt seed electrons: MMS/FEEPS observations[J]. Journal of Geophysical Research: Space Physics, 2020, 125(4): e2019JA027711 doi: 10.1029/2019ja027711
    [102]
    CHEN X R, ZONG Q G, ZOU H, et al. Distribution of energetic electrons in the near earth space: new observations from the BeiDa imaging electron spectrometer and the van Allen probes[J]. Planetary and Space Science, 2020, 186: 104919 doi: 10.1016/j.pss.2020.104919
    [103]
    LIU Z Y, WANG B, ZONG Q G, et al. Thermal electron behavior in obliquely propagating whistler waves: MMS observations in the solar wind[J]. Geophysical Research Letters, 2021, 48(14): e2021GL094099 doi: 10.1029/2021gl094099
    [104]
    CAI B, WU Y F, TAO X. Effects of nonlinear resonance broadening on interactions between electrons and whistler mode waves[J]. Geophysical Research Letters, 2020, 47(11): e2020GL087991 doi: 10.1029/2020gl087991
    [105]
    WU H, CHEN T, KALEGAEV V V, et al. Long‐term dropout of relativistic electrons in the outer radiation belt during two sequential geomagnetic storms[J]. Journal of Geophysical Research: Space Physics, 2020, 125(10): e2020JA028098
    [106]
    SHI X F, REN J, ZONG Q G. The dynamics of the inner boundary of the outer radiation belt during geomagnetic storms[J]. Journal of Geophysical Research: Space Physics, 2020, 125(5): e2019JA027309 doi: 10.1029/2019ja027309
    [107]
    HE J B, JIN Y Y, XIAO F L, et al. The influence of various frequency chorus waves on electron dynamics in radiation belts[J]. Science China Technological Sciences, 2021, 64(4): 890-897 doi: 10.1007/s11431-020-1750-6
    [108]
    LIU S, XIE Y Q, ZHANG S, et al. Unusual loss of van Allen belt relativistic electrons by extremely low-frequency chorus[J]. Geophysical Research Letters, 2020, 47(18): e2020GL089994 doi: 10.1029/2020gl089994
    [109]
    KONG Z Y, GAO X L, CHEN H Y, et al. The correlation between whistler mode waves and electron beam-like distribution: test particle simulations and THEMIS observations[J]. Journal of Geophysical Research: Space Physics, 2021, 126(11): e2021JA029834 doi: 10.1029/2021ja029834
    [110]
    GUO D Y, XIANG Z, NI B B, et al. Bounce resonance scattering of radiation belt energetic electrons by extremely low-frequency chorus waves[J]. Geophysical Research Letters, 2021, 48(22): e2021GL095714 doi: 10.1029/2021gl095714
    [111]
    MA X, TIAN A M, SHI Q Q, et al. Electron pitch angle distributions in compressional Pc5 waves by THEMIS-A observations[J]. Geophysical Research Letters, 2021, 48(22): e2021GL095730 doi: 10.1029/2021gl095730
    [112]
    CHEN X R, ZONG Q G, ZOU H, et al. Beida imaging electron spectrometer observation of multi-period electron flux modulation caused by localized ultra-low-frequency waves[J]. Annales Geophysicae, 2020, 38(4): 801-813 doi: 10.5194/angeo-38-801-2020
    [113]
    HE Z G, YU J, LI K, et al. A comparative study on the distributions of incoherent and coherent plasmaspheric hiss[J]. Geophysical Research Letters, 2021, 48(7): e2021GL092902 doi: 10.1029/2021gl092902
    [114]
    LIU N G, SU Z P, GAO Z L, et al. Comprehensive observations of substorm-enhanced plasmaspheric hiss generation, propagation, and dissipation[J]. Geophysical Research Letters, 2020, 47(2): e2019GL086040 doi: 10.1029/2019gl086040
    [115]
    WANG J L, LI L Y, YU J. Statistical relationship between exohiss waves and plasmaspheric hiss[J]. Geophysical Research Letters, 2020, 47(5): e2020GL087023 doi: 10.1029/2020gl087023
    [116]
    YU J, WANG J, LI L Y, et al. Electron diffusion by coexisting plasmaspheric hiss and chorus waves: multisatellite observations and simulations[J]. Geophysical Research Letters, 2020, 47(15): e2020GL088753 doi: 10.1029/2020gl088753
    [117]
    ZHANG S, RAE I J, WATT C E J, et al. Determining the global scale size of chorus waves in the magnetosphere[J]. Journal of Geophysical Research: Space Physics, 2021, 126(11): e2021JA029569 doi: 10.1029/2021ja029569
    [118]
    GU X D, XIA S J, FU S, et al. Dynamic responses of radiation belt electron fluxes to magnetic storms and their correlations with magnetospheric plasma wave activities[J]. The Astrophysical Journal, 2020, 891(2): 127 doi: 10.3847/1538-4357/ab71fc
    [119]
    FU H B, YUE C, MA Q L, et al. Frequency-dependent responses of plasmaspheric hiss to the impact of an interplanetary shock[J]. Geophysical Research Letters, 2021, 48(20): e2021GL094810 doi: 10.1029/2021gl094810
    [120]
    LI H M, LI W, MA Q L, et al. Attenuation of plasmaspheric hiss associated with the enhanced magnetospheric electric field[J]. Annales Geophysicae, 2021, 39(3): 461-470 doi: 10.5194/angeo-39-461-2021
    [121]
    HAO Y X, ZONG Q G, ZHOU X Z, et al. A short-lived three-belt structure for sub-MeV electrons in the van Allen belts: time scale and energy dependence[J]. Journal of Geophysical Research: Space Physics, 2020, 125(9): e2020JA028031 doi: 10.1029/2020ja028031
    [122]
    HE Z G, YAN Q, ZHANG X P, et al. Precipitation loss of radiation belt electrons by two-band plasmaspheric hiss waves[J]. Journal of Geophysical Research: Space Physics, 2020, 125(10): e2020JA028157 doi: 10.1029/2020ja028157
    [123]
    HE Z G, YU J, CHEN L J, et al. Statistical study on locally generated high-frequency plasmaspheric hiss and its effect on suprathermal electrons: van Allen probes observation and quasi-linear simulation[J]. Journal of Geophysical Research: Space Physics, 2020, 125(10): e2020JA028526 doi: 10.1029/2020ja028526
    [124]
    LI L Y, YU J, CAO J B, et al. Competitive influences of different plasma waves on the pitch angle distribution of energetic electrons inside and outside plasmasphere[J]. Geophysical Research Letters, 2022, 49(1): e2021GL096062 doi: 10.1029/2021gl096062
    [125]
    LI L Y, WANG Z Y, YU J, et al. Complementary and catalytic roles of man-made VLF waves and natural plasma waves in the loss of radiation belt electrons[J]. Journal of Geophysical Research: Space Physics, 2021, 126(10): e2020JA028879 doi: 10.1029/2020ja028879
    [126]
    XIANG Z, LI X L, NI B B, et al. Dynamics of energetic electrons in the slot region during geomagnetically quiet times: losses due to wave-particle interactions versus a source from Cosmic Ray Albedo Neutron Decay (CRAND)[J]. Journal of Geophysical Research: Space Physics, 2020, 125(9): e2020JA028042 doi: 10.1029/2020ja028042
    [127]
    MEI Y, GE Y S, DU A M, et al. Energy-dependent boundaries of earth's radiation belt electron slot region[J]. The Astrophysical Journal, 2021, 922(2): 246 doi: 10.3847/1538-4357/ac25ec
    [128]
    ZHU Q, CAO X, GU X D, et al. Empirical loss timescales of slot region electrons due to plasmaspheric hiss based on van Allen probes observations[J]. Journal of Geophysical Research: Space Physics, 2021, 126(4): e2020JA029057 doi: 10.1029/2020ja029057
    [129]
    CAO X, NI B B, SUMMERS D, et al. Hot plasma effects on the pitch-angle scattering rates of radiation belt electrons due to plasmaspheric hiss[J]. The Astrophysical Journal, 2020, 896(2): 118 doi: 10.3847/1538-4357/ab9107
    [130]
    MA X, CAO X, NI B B, et al. Realistic dispersion of plasmaspheric hiss in the inner magnetosphere and its effect on wave-induced electron scattering rates[J]. The Astrophysical Journal, 2021, 916(1): 14 doi: 10.3847/1538-4357/abf4d6
    [131]
    WANG Z S, SU Z P, LIU N G, et al. Suprathermal electron evolution under the competition between plasmaspheric plume hiss wave heating and collisional cooling[J]. Geophysical Research Letters, 2020, 47(19): e2020GL089649 doi: 10.1029/2020gl089649
    [132]
    FU S, YI J, NI B B, et al. Combined scattering of radiation belt electrons by low-frequency hiss: cyclotron, landau, and bounce resonances[J]. Geophysical Research Letters, 2020, 47(5): e2020GL086963 doi: 10.1029/2020gl086963
    [133]
    LI Y X, YUE C, HAO Y X, et al. The characteristics of three-belt structure of sub-MeV electrons in the radiation belts[J]. Journal of Geophysical Research: Space Physics, 2021, 126(7): e2021JA029385 doi: 10.1029/2021ja029385
    [134]
    LI L F, TU W C, DAI L, et al. Quantifying event-specific radial diffusion coefficients of radiation belt electrons with the PPMLR-MHD simulation[J]. Journal of Geophysical Research: Space Physics, 2020, 125(5): e2019JA027634 doi: 10.1029/2019ja027634
    [135]
    ZHANG D J, LIU W L, LI X L, et al. Relation between shock-related impulse and subsequent ULF wave in the Earth’s magnetosphere[J]. Geophysical Research Letters, 2020, 47(23): e2020GL090027 doi: 10.1029/2020gl090027
    [136]
    LI L, ZHOU X Z, ZONG Q G, et al. Origin of frequency-doubling and shoulder-like magnetic pulsations in ULF waves[J]. Geophysical Research Letters, 2021, 48(23): e2021GL096532 doi: 10.1029/2021gl096532
    [137]
    ZHANG Y C, DAI L, RONG Z J, et al. Observation of the large-amplitude and fast-damped plasma sheet flapping triggered by reconnection-induced ballooning instability[J]. Journal of Geophysical Research: Space Physics, 2020, 125(9): e2020JA028218 doi: 10.1029/2020ja028218
    [138]
    LI L, ZHOU X Z, OMURA Y, et al. Drift resonance between particles and compressional toroidal ULF waves in dipole magnetic field[J]. Journal of Geophysical Research: Space Physics, 2021, 126(10): e2020JA028842 doi: 10.1029/2020ja028842
    [139]
    HAO Y X, ZHAO X X, ZONG Q G, et al. Simultaneous observations of localized and global drift resonance[J]. Geophysical Research Letters, 2020, 47(17): e2020GL088019 doi: 10.1029/2020gl088019
    [140]
    LI L, OMURA Y, ZHOU X Z, et al. Roles of magnetospheric convection on nonlinear drift resonance between electrons and ULF waves[J]. Journal of Geophysical Research: Space Physics, 2020, 125(6): e2020JA027787 doi: 10.1029/2020ja027787
    [141]
    ZHAO X X, HAO Y X, ZONG Q G, et al. Origin of electron boomerang stripes: statistical study[J]. Geophysical Research Letters, 2021, 48(11): e2021GL093377 doi: 10.1029/2021gl093377
    [142]
    LIU Z Y, ZONG Q G, ZHOU X Z, et al. Pitch angle structures of ring current ions induced by evolving poloidal ultra-low frequency waves[J]. Geophysical Research Letters, 2020, 47(4): e2020GL087203 doi: 10.1029/2020gl087203
    [143]
    LI X Y, LIU Z Y, ZONG Q G, et al. Pitch angle phase shift in ring current ions interacting with ultra-low-frequency waves: van Allen probes observations[J]. Journal of Geophysical Research: Space Physics, 2021, 126(4): e2020JA029025 doi: 10.1029/2020ja029025
    [144]
    CHEN H Y, GAO X L, LU Q M, et al. Statistical evidence for EMIC wave excitation driven by substorm injection and enhanced solar wind pressure in the Earth’s magnetosphere: two different EMIC wave sources[J]. Geophysical Research Letters, 2020, 47(21): e2020GL090275 doi: 10.1029/2020gl090275
    [145]
    LIU N G, SU Z P, GAO Z L, et al. Can solar wind decompressive discontinuities suppress magnetospheric electromagnetic ion cyclotron waves associated with fresh proton injections?[J]. Geophysical Research Letters, 2020, 47(17): e2020GL090296
    [146]
    XIONG Y, XIE L, FU S Y, et al. Non‐storm erosion of MeV electron outer radiation belt down to L*< 4.0 associated with successive enhancements of solar wind density[J]. Earth and Planetary Physics, 2021, 5(6): 581-591
    [147]
    GUAN C Y, SHANG X J, XIE Y Q, et al. Generation of simultaneous H+ and He+ band EMIC waves in the nightside radiation belt[J]. Science China Technological Sciences, 2020, 63(11): 2369-2374 doi: 10.1007/s11431-019-1545-6
    [148]
    ZHU M H, YU Y Q, JORDANOVA V K. Simulating the effects of warm O+ ions on the growth of Electromagnetic Ion Cyclotron (EMIC) waves[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2021, 224: 105737 doi: 10.1016/j.jastp.2021.105737
    [149]
    YAO J S, ZHAO Y K, LI Y, et al. A new excitation mechanism of He+ band electromagnetic ion cyclotron wave: hybrid simulation study[J]. Physics of Plasmas, 2021, 28(1): 012903 doi: 10.1063/5.0030265
    [150]
    YU X D, YUAN Z G, OUYANG Z H. First observations of O2+ band EMIC waves in the terrestrial magnetosphere[J]. Geophysical Research Letters, 2021, 48(19): e2021GL094681
    [151]
    WANG G, GAO Z L, WU M Y, et al. Trapping and amplification of unguided mode EMIC waves in the radiation belt[J]. Journal of Geophysical Research: Space Physics, 2021, 126(9): e2021JA029322 doi: 10.1029/2021ja029322
    [152]
    CAO X, NI B B, SUMMERS D, et al. Effects of superthermal plasmas on the linear growth of multiband EMIC waves[J]. The Astrophysical Journal, 2020, 899(1): 43 doi: 10.3847/1538-4357/ab9ec4
    [153]
    YU J, LI L Y, CUI J, et al. Nonlinear interactions between relativistic electrons and EMIC waves in magnetospheric warm plasma environments[J]. Journal of Geophysical Research: Space Physics, 2020, 125(12): e2020JA028089 doi: 10.1029/2020ja028089
    [154]
    LOU Y Q, CAO X, NI B B, et al. Parametric dependence of polarization reversal effects on the particle pitch angle scattering by EMIC waves[J]. Journal of Geophysical Research: Space Physics, 2021, 126(12): e2021JA029966 doi: 10.1029/2021ja029966
    [155]
    CAO X, NI B B, SUMMERS D, et al. Effects of polarization reversal on the pitch angle scattering of radiation belt electrons and ring current protons by EMIC waves[J]. Geophysical Research Letters, 2020, 47(17): e2020GL089718 doi: 10.1029/2020gl089718
    [156]
    WANG Jie, YUAN Zhigang, YU Xiongdong, et al. Precipitation of ring current protons caused by wave-particle interactions with satellite conjugated observation[J]. Chinese Journal of Geophysics, 2020, 63(6): 2131-2140 doi: 10.6038/cjg2020N0313
    [157]
    SHREEDEVI P R, YU Y Q, NI B B, et al. Simulating the ion precipitation from the inner magnetosphere by H-band and He-band electromagnetic ion cyclotron waves[J]. Journal of Geophysical Research: Space Physics, 2021, 126(3): e2020JA028553 doi: 10.1029/2020ja028553
    [158]
    ZHU M H, YU Y Q, TIAN X B, et al. On the ion precipitation due to Field Line Curvature (FLC) and EMIC wave scattering and their subsequent impact on ionospheric electrodynamics[J]. Journal of Geophysical Research: Space Physics, 2021, 126(3): e2020JA028812 doi: 10.1029/2020ja028812
    [159]
    YU Y Q, TIAN X B, JORDANOVA V K. The effects of Field Line Curvature (FLC) scattering on ring current dynamics and isotropic boundary[J]. Journal of Geophysical Research: Space Physics, 2020, 125(8): e2020JA027830 doi: 10.1029/2020ja027830
    [160]
    ABID A A, LU Q M, GAO X L, et al. Energization of cold ions by electromagnetic ion cyclotron waves: Magnetospheric Multiscale (MMS) observations[J]. Physics of Plasmas, 2021, 28(7): 072901 doi: 10.1063/5.0046764
    [161]
    YUE C, MA Q L, JUN C W, et al. The modulation of plasma and waves by background electron density irregularities in the inner magnetosphere[J]. Geophysical Research Letters, 2020, 47(15): e2020GL088855 doi: 10.1029/2020gl088855
    [162]
    TENG S, LIU N, MA Q, et al. Direct observational evidence of the simultaneous excitation of electromagnetic ion cyclotron waves and magnetosonic waves by an anisotropic proton ring distribution[J]. Geophysical Research Letters, 2021, 48(8): e2020GL091850 doi: 10.1029/2020gl091850
    [163]
    HUANG Z, YUAN Z G, YU X D, et al. Simultaneous generation of EMIC and MS waves during the magnetic dip in the inner magnetosphere[J]. Geophysical Research Letters, 2021, 48(18): e2021GL094842 doi: 10.1029/2021gl094842
    [164]
    YAN L, CAO X, HUA M, et al. Statistics of magnetosonic waves in the slot region observed by van Allen probes[J]. Geophysical Research Letters, 2021, 48(14): e2021GL094015 doi: 10.1029/2021gl094015
    [165]
    YAO F, YUAN Z G, YU X D, et al. Analytical fast magnetosonic wave model based on observations of van Allen probe[J]. Journal of Geophysical Research: Space Physics, 2020, 125(10): e2020JA028527 doi: 10.1029/2020ja028527
    [166]
    OUYANG Z H, YUAN Z G, YU X D, et al. Narrowband magnetosonic waves near the lower hybrid resonance frequency in the inner magnetosphere: wave properties and excitation conditions[J]. Journal of Geophysical Research: Space Physics, 2021, 126(1): 2020JA028158 doi: 10.1029/2020ja028158
    [167]
    WANG G, WU M Y, WANG G Q, et al. Reflection of low-frequency fast magnetosonic waves at the local two-ion cutoff frequency: observation in the plasmasphere[J]. Annales Geophysicae, 2021, 39(4): 613-625 doi: 10.5194/angeo-39-613-2021
    [168]
    YU X D, YUAN Z G, OUYANG Z H, et al. Effects of the plasmapause on the radial propagation of fast magnetosonic waves: an analytical approach[J]. Journal of Geophysical Research: Space Physics, 2021, 126(3): e2020JA028330 doi: 10.1029/2020ja028330
    [169]
    HUANG S Y, DENG D, YUAN Z G, et al. First observations of magnetosonic waves with nonlinear harmonics[J]. Journal of Geophysical Research: Space Physics, 2020, 125(6): e2019JA027724 doi: 10.1029/2019ja027724
    [170]
    ZOU Z Y, GAO Z L, ZUO P B, et al. Evidence of wave-wave coupling between frequency harmonic bands of magnetosonic waves[J]. Physics of Plasmas, 2021, 28(12): 122903 doi: 10.1063/5.0065582
    [171]
    YU X D, YUAN Z G, YAO F, et al. Radially full reflection of fast magnetosonic waves near the cut-off frequency[J]. Journal of Geophysical Research: Space Physics, 2021, 126(8): e2021JA029508 doi: 10.1029/2021ja029508
    [172]
    SUN J C, LU Q M, WANG X Y, et al. Modulation of magnetosonic waves by background plasma density in a dipole magnetic field: 2-D PIC simulation[J]. Journal of Geophysical Research: Space Physics, 2021, 126(11): e2021JA029729 doi: 10.1029/2021ja029729
    [173]
    YU X D, YUAN Z G, YAO F, et al. Electromagnetic characteristics of fast magnetosonic waves in the inner magnetosphere[J]. Journal of Geophysical Research: Space Physics, 2021, 126(9): e2021JA029759 doi: 10.1029/2021ja029759
    [174]
    WU Z Y, SU Z P, LIU N G, et al. Off-equatorial source of magnetosonic waves extending above the lower hybrid resonance frequency in the inner magnetosphere[J]. Geophysical Research Letters, 2021, 48(6): e2020GL091830 doi: 10.1029/2020gl091830
    [175]
    OUYANG Z H, YUAN Z G, YU X D, et al. Proton ring evolution and its effect on magnetosonic wave excitation: particle-in-cell simulation and linear theory[J]. Geophysical Research Letters, 2021, 48(14): e2021GL092747 doi: 10.1029/2021gl092747
    [176]
    ZHOU Q H, JIANG Z, YANG C, et al. Correlated observation on global distributions of magnetosonic waves and proton rings in the radiation belts[J]. Journal of Geophysical Research: Space Physics, 2021, 126(1): e2020JA028354 doi: 10.1029/2020ja028354
    [177]
    GU Xudong, HE Ying, NI Binbin, et al. Scattering of radiation belt electrons caused by wave-particle interactions with magnetosonic waves associated with plasma density drop[J]. Chinese Journal of Geophysics, 2020, 63(6): 2121-2130 doi: 10.6038/cjg2020N0384
    [178]
    YUAN Z G, YAO F, YU X D, et al. Ionospheric signatures of ring current ions scattered by magnetosonic waves[J]. Geophysical Research Letters, 2020, 47(16): e2020GL089032 doi: 10.1029/2020gl089032
    [179]
    ZHOU R X, FU S, NI B B, et al. Parametric dependence of the formation of electron butterfly pitch angle distribution driven by magnetosonic waves[J]. Journal of Geophysical Research: Space Physics, 2020, 125(10): e2020JA027967 doi: 10.1029/2020ja027967
    [180]
    FU S, GE Y S. Acceleration of ring current protons driven by magnetosonic waves: comparisons of test particle simulations with quasilinear calculations[J]. The Astrophysical Journal, 2021, 908(2): 203 doi: 10.3847/1538-4357/abd2b3
    [181]
    LIU C M, FU H S, LIU Y Y, et al. Kinetics of magnetic hole behind dipolarization front[J]. Geophysical Research Letters, 2021, 48(10): e2021GL093174 doi: 10.1029/2021gl093174
    [182]
    LIU Y Y, FU H S, ZONG Q G, et al. First topology of electron-scale magnetic hole[J]. Geophysical Research Letters, 2020, 47(18): e2020GL088374 doi: 10.1029/2020gl088374
    [183]
    YAO S T, YUE Z S, SHI Q Q, et al. Statistical properties of kinetic-scale magnetic holes in terrestrial space[J]. Earth and Planetary Physics, 2021, 5(1): 63-72 doi: 10.26464/epp2021011
    [184]
    HUANG S Y, XU S B, HE L H, et al. Excitation of whistler waves through the bidirectional field-aligned electron beams with electron temperature anisotropy: MMS observations[J]. Geophysical Research Letters, 2020, 47(14): e2020GL087515 doi: 10.1029/2020gl087515
    [185]
    YAO S T, SHI Q Q, ZONG Q G, et al. Low-frequency whistler waves modulate electrons and generate higher-frequency whistler waves in the solar wind[J]. The Astrophysical Journal, 2021, 923(2): 216 doi: 10.3847/1538-4357/ac2e97
    [186]
    WANG M M, YAO S T, SHI Q Q, et al. Propagation properties of foreshock cavitons: cluster observations[J]. Science China Technological Sciences, 2020, 63(1): 173-182 doi: 10.1007/s11431-018-9450-3
    [187]
    JIANG K, HUANG S Y, FU H S, et al. Observational evidence of magnetic reconnection in the terrestrial foreshock region[J]. The Astrophysical Journal, 2021, 922(1): 56 doi: 10.3847/1538-4357/ac2500
    [188]
    CAI C L, WEI X H. Multipoint observations of magnetosheath response to foreshock transients[J]. Journal of Geophysical Research: Space Physics, 2020, 125(2): e2019JA027416 doi: 10.1029/2019ja027416
    [189]
    WANG B Y, ZHANG H, LIU Z Y, et al. Energy modulations of magnetospheric ions induced by foreshock transient-driven ultralow-frequency waves[J]. Geophysical Research Letters, 2021, 48(10): e2021GL093913 doi: 10.1029/2021gl093913
    [190]
    LI X Y, LIU Z Y, ZONG Q G, et al. Off-equatorial minima effects on ULF wave-ion interaction in the dayside outer magnetosphere[J]. Geophysical Research Letters, 2021, 48(18): e2021GL095648 doi: 10.1029/2021gl095648
    [191]
    LU J Y, ZHANG H X, WANG M, et al. Energy transfer across the magnetopause under radial IMF conditions[J]. The Astrophysical Journal, 2021, 920(1): 52 doi: 10.3847/1538-4357/ac15f4
    [192]
    WANG M, LU J Y, KABIN K, et al. Influence of the interplanetary magnetic field cone angle on the geometry of bow shocks[J]. The Astronomical Journal, 2020, 159(5): 227 doi: 10.3847/1538-3881/ab86a7
    [193]
    WANG J, HUANG C, GE Y S, et al. Influence of the IMF Bx on the geometry of the bow shock and magnetopause[J]. Planetary and Space Science, 2020, 182: 104844 doi: 10.1016/j.pss.2020.104844
    [194]
    SHANG W S, TANG B B, SHI Q Q, et al. Unusual location of the geotail magnetopause near lunar orbit: a case study[J]. Journal of Geophysical Research: Space Physics, 2020, 125(4): e2019JA027401 doi: 10.1029/2019ja027401
    [195]
    MAN H Y, ZHOU M, ZHONG Z H, et al. Statistics of the intense current structure in the dayside magnetopause boundary layer[J]. Journal of Geophysical Research: Space Physics, 2021, 126(12): e2021JA029890 doi: 10.1029/2021ja029890
    [196]
    LI Hongshuo, LÜ Jianyong, WANG Ming, et al. A statistical study of the relationship between the upstream plasma β and characteristic parameters such as magnetopause thickness and velocity based on satellite observations[J]. Chinese Journal of Geophysics, 2021, 64(9): 3005-3020 doi: 10.6038/cjg2021P0080
    [197]
    ZENG C, DUAN S P, WANG C, et al. Magnetospheric multiscale observations of energetic oxygen ions at the duskside magnetopause during intense substorms[J]. Annales Geophysicae, 2020, 38(1): 123-135 doi: 10.5194/angeo-38-123-2020
    [198]
    ZHU X Q, WANG M M, SHI Q Q, et al. Motion of classic and spontaneous hot flow anomalies observed by cluster[J]. Journal of Geophysical Research: Space Physics, 2021, 126(11): e2021JA029418 doi: 10.1029/2021ja029418
    [199]
    HUANG S Y, WEI Y Y, YUAN Z G, et al. Electron jets in the terrestrial magnetotail: a statistical overview[J]. The Astrophysical Journal, 2020, 896(1): 67 doi: 10.3847/1538-4357/ab8eb0
    [200]
    LI H, JIANG W C, WANG C, et al. Evolution of the Earth’s magnetosheath turbulence: a statistical study based on MMS observations[J]. The Astrophysical Journal Letters, 2020, 898(2): L43 doi: 10.3847/2041-8213/aba531
    [201]
    QU B H, LU J Y, WANG M, et al. Formation of the bow shock indentation: MHD simulation results[J]. Earth and Planetary Physics, 2021, 5(3): 259-269 doi: 10.26464/epp2021033
    [202]
    GUO Z Z, FU H S, CAO J B, et al. Betatron cooling of electrons in martian magnetotail[J]. Geophysical Research Letters, 2021, 48(13): e2021GL093826 doi: 10.1029/2021gl093826
    [203]
    LI J H, ZHOU X Z, ZONG Q G, et al. On the origin of donut-shaped electron distributions within magnetic cavities[J]. Geophysical Research Letters, 2021, 48(2): e2020GL091613 doi: 10.1029/2020gl091613
    [204]
    LI J H, YANG F, ZHOU X Z, et al. Self-consistent kinetic model of nested electron- and ion-scale magnetic cavities in space plasmas[J]. Nature Communications, 2020, 11(1): 5616 doi: 10.1038/s41467-020-19442-0
    [205]
    LIU J, YAO S T, SHI Q Q, et al. Electron energization and energy dissipation in microscale electromagnetic environments[J]. The Astrophysical Journal Letters, 2020, 899(2): L31 doi: 10.3847/2041-8213/abab92
    [206]
    LI J H, ZHOU X Z, YANG F, et al. Helical magnetic cavities: kinetic model and comparison with MMS observations[J]. Geophysical Research Letters, 2021, 48(6): e2021GL092383 doi: 10.1029/2021gl092383
    [207]
    GAO C H, TANG B B, LI W Y, et al. Effect of the electric field on the gyrotropic electron distributions[J]. Geophysical Research Letters, 2021, 48(5): e2020GL091437 doi: 10.1029/2020gl091437
    [208]
    HUANG S Y, ZHANG J, SAHRAOUI F, et al. Observations of magnetic field line curvature and its role in the space plasma turbulence[J]. The Astrophysical Journal Letters, 2020, 898(1): L18 doi: 10.3847/2041-8213/aba263
    [209]
    HUANG K, LU Q M, LU S, et al. Formation of pancake, rolling pin, and cigar distributions of energetic electrons at the Dipolarization Fronts (DFs) driven by magnetic reconnection: a two-dimensional particle-in-cell simulation[J]. Journal of Geophysical Research: Space Physics, 2021, 126(10): e2021JA029939 doi: 10.1029/2021ja029939
    [210]
    LIU C M, FU H S, LIU Y Y, et al. Electron pitch-angle distribution in Earth’s magnetotail: pancake, cigar, isotropy, butterfly, and rolling-pin[J]. Journal of Geophysical Research: Space Physics, 2020, 125(4): e2020JA027777 doi: 10.1029/2020ja027777
    [211]
    LU Q M, WANG H Y, WANG X Y, et al. Turbulence-driven magnetic reconnection in the magnetosheath downstream of a quasi-parallel shock: a three-dimensional global hybrid simulation[J]. Geophysical Research Letters, 2020, 47(1): e2019GL085661 doi: 10.1029/2019gl085661
    [212]
    YANG Z W, LIU Y D, MATSUKIYO S, et al. PIC simulations of microinstabilities and waves at near-sun solar wind perpendicular shocks: predictions for parker solar probe and solar orbiter[J]. The Astrophysical Journal Letters, 2020, 900(2): L24 doi: 10.3847/2041-8213/abaf59
    [213]
    WANG S M, WANG R S, LU Q M, et al. Energy dissipation via magnetic reconnection within the coherent structures of the magnetosheath turbulence[J]. Journal of Geophysical Research: Space Physics, 2021, 126(4): e2020JA028860 doi: 10.1029/2020ja028860
    [214]
    LU Q M, YANG Z W, WANG H Y, et al. Two-dimensional particle-in-cell simulation of magnetic reconnection in the downstream of a quasi-perpendicular shock[J]. The Astrophysical Journal, 2021, 919(1): 28 doi: 10.3847/1538-4357/ac18c0
    [215]
    YANG Z W, LIU Y D, JOHLANDER A, et al. Mms direct observations of kinetic-scale shock self-reformation[J]. The Astrophysical Journal Letters, 2020, 901(1): L6 doi: 10.3847/2041-8213/abb3ff
    [216]
    WANG G Q, ZHANG T L, WU M Y, et al. Roles of electrons and ions in formation of the current in mirror-mode structures in the terrestrial plasma sheet: magnetospheric multiscale observations[J]. Annales Geophysicae, 2020, 38(2): 309-318 doi: 10.5194/angeo-38-309-2020
    [217]
    YAO S T, HAMRIN M, SHI Q Q, et al. Propagating and dynamic properties of magnetic dips in the dayside magnetosheath: MMS observations[J]. Journal of Geophysical Research: Space Physics, 2020, 125(6): e2019JA026736 doi: 10.1029/2019ja026736
    [218]
    YIN Z F, ZHOU X Z, ZONG Q G, et al. Inner magnetospheric magnetic dips and energetic protons trapped therein: multi-spacecraft observations and simulations[J]. Geophysical Research Letters, 2021, 48(7): e2021GL092567 doi: 10.1029/2021gl092567
    [219]
    WEI Y Y, HUANG S Y, YUAN Z G, et al. Observation of high-frequency electrostatic waves in the dip region ahead of dipolarization front[J]. Journal of Geophysical Research: Space Physics, 2021, 126(11): e2021JA029408 doi: 10.1029/2021ja029408
    [220]
    WEI D, DUNLOP M W, YANG J Y, et al. Intense dB/dt variations driven by near-earth Bursty Bulk Flows (BBFs): a case study[J]. Geophysical Research Letters, 2021, 48(4): e2020GL091781 doi: 10.1029/2020gl091781
    [221]
    ZHANG L Q, LUI A T Y, BAUMJOHANN W, et al. Anisotropic vorticity within bursty bulk flow turbulence[J]. Journal of Geophysical Research: Space Physics, 2020, 125(10): e2020JA028255 doi: 10.1029/2020ja028255
    [222]
    ZHANG L Q, BAUMJOHANN W, KHOTYAINTSEV Y V, et al. BBF deceleration down-tail of X <-15 RE from MMS observation[J]. Journal of Geophysical Research: Space Physics, 2020, 125(2): e2019JA026837 doi: 10.1029/2019ja026837
    [223]
    ZHANG M, WANG R S, LU Q M, et al. Observation of the tailward electron flows commonly detected at the flow boundary of the earthward ion bursty bulk flows in the magnetotail[J]. The Astrophysical Journal, 2020, 891(2): 175 doi: 10.3847/1538-4357/ab72a8
    [224]
    ZHANG L Q, WANG C, DAI L, et al. MMS observation on the cross-tail current sheet roll-up at the dipolarization front[J]. Journal of Geophysical Research: Space Physics, 2021, 126(4): e2020JA028796 doi: 10.1029/2020ja028796
    [225]
    WANG Z, FU H S, VAIVADS A, et al. Monitoring the spatio-temporal evolution of a reconnection X-line in space[J]. The Astrophysical Journal Letters, 2020, 899(2): L34 doi: 10.3847/2041-8213/abad2c
    [226]
    WANG Z W, HU H Q, LU J Y, et al. Observational evidence of transient lobe reconnection triggered by sudden northern enhancement of IMF B z[J]. Journal of Geophysical Research: Space Physics, 2021, 126(9): e2021JA029410 doi: 10.1029/2021ja029410
    [227]
    LI W H, WU L Y, GE Y S, et al. Magnetotail configuration under northward IMF conditions[J]. Journal of Geophysical Research: Space Physics, 2021, 126(2): e2020JA028634 doi: 10.1029/2020ja028634
    [228]
    HUANG K, LU Q M, CHIEN A, et al. Particle-in-cell simulations of asymmetric reconnection driven by laser-powered capacitor coils[J]. Plasma Physics and Controlled Fusion, 2021, 63(1): 015010 doi: 10.1088/1361-6587/abc600
    [229]
    GUO J, LU S, LU Q M, et al. Structure and coalescence of magnetopause flux ropes and their dependence on IMF clock angle: three-dimensional global hybrid simulations[J]. Journal of Geophysical Research: Space Physics, 2021, 126(2): e2020JA028670 doi: 10.1029/2020ja028670
    [230]
    MAN H Y, ZHONG Z H, LI H M. Internal structures of the ion-scale flux rope associated with dayside magnetopause reconnection[J]. Astrophysics and Space Science, 2020, 365(5): 87 doi: 10.1007/s10509-020-03803-8
    [231]
    ZHONG Z H, ZHOU M, TANG R X, et al. Direct evidence for electron acceleration within ion-scale flux rope[J]. Geophysical Research Letters, 2020, 47(1): e2019GL085141 doi: 10.1029/2019gl085141
    [232]
    CHEN Z Z, FU H S, WANG Z, et al. First observation of magnetic flux rope inside electron diffusion region[J]. Geophysical Research Letters, 2021, 48(7): e2020GL089722 doi: 10.1029/2020gl089722
    [233]
    HE R J, FU H S, LIU Y Y, et al. Subion-scale flux rope nested inside ion-scale flux rope in earth's magnetotail[J]. Geophysical Research Letters, 2021, 48(23): e2021GL096169 doi: 10.1029/2021gl096169
    [234]
    ZHANG C, RONG Z J, SHEN C, et al. Examining the magnetic geometry of magnetic flux ropes from the view of single-point analysis[J]. The Astrophysical Journal, 2020, 903(1): 53 doi: 10.3847/1538-4357/abba16
    [235]
    MAN H Y, ZHOU M, YI Y Y, et al. Observations of electron-only magnetic reconnection associated with macroscopic magnetic flux ropes[J]. Geophysical Research Letters, 2020, 47(19): e2020GL089659 doi: 10.1029/2020gl089659
    [236]
    ZHONG Z H, ZHOU M, DENG X H, et al. Three-dimensional electron-scale magnetic reconnection in Earth’s magnetosphere[J]. Geophysical Research Letters, 2021, 48(1): 2020GL090946 doi: 10.1029/2020gl090946
    [237]
    ZHOU M, MAN H Y, DENG X H, et al. Observations of secondary magnetic reconnection in the turbulent reconnection outflow[J]. Geophysical Research Letters, 2021, 48(4): e2020GL091215 doi: 10.1029/2020gl091215
    [238]
    WANG S M, WANG R S, LU Q M, et al. Direct evidence of secondary reconnection inside filamentary currents of magnetic flux ropes during magnetic reconnection[J]. Nature Communications, 2020, 11(1): 3964 doi: 10.1038/s41467-020-17803-3
    [239]
    JIANG K, HUANG S Y, YUAN Z G, et al. Statistical properties of current, energy conversion, and electron acceleration in flux ropes in the terrestrial magnetotail[J]. Geophysical Research Letters, 2021, 48(11): e2021GL093458 doi: 10.1029/2021gl093458
    [240]
    GUO J, LU S, LU Q M, et al. Re-reconnection processes of magnetopause flux ropes: three-dimensional global hybrid simulations[J]. Journal of Geophysical Research: Space Physics, 2021, 126(6): e2021JA029388 doi: 10.1029/2021ja029388
    [241]
    FU H S, GRIGORENKO E E, GABRIELSE C, et al. Magnetotail dipolarization fronts and particle acceleration: a review[J]. Science China Earth Sciences, 2020, 63(2): 235-256 doi: 10.1007/s11430-019-9551-y
    [242]
    FU H S, ZHAO M J, YU Y, et al. A new theory for energetic electron generation behind dipolarization front[J]. Geophysical Research Letters, 2020, 47(6): e2019GL086790 doi: 10.1029/2019gl086790
    [243]
    LIU C M, FU H S, YU Y Q, et al. Energy flux densities at dipolarization fronts[J]. Geophysical Research Letters, 2021, 48(16): e2021GL094932 doi: 10.1029/2021gl094932
    [244]
    MA W Q, ZHOU M, ZHONG Z H, et al. Electron acceleration rate at dipolarization fronts[J]. The Astrophysical Journal, 2020, 903(2): 84 doi: 10.3847/1538-4357/abb8cc
    [245]
    FU W D, FU H S, CAO J B, et al. Formation of rolling-pin distribution of suprathermal electrons behind dipolarization fronts[J]. Journal of Geophysical Research: Space Physics, 2022, 127(1): e2021JA029642 doi: 10.1029/2021ja029642
    [246]
    MA Y D, YANG J, DUNLOP M W, et al. Energy budget of high-speed plasma flows in the terrestrial magnetotail[J]. The Astrophysical Journal, 2020, 894(1): 16 doi: 10.3847/1538-4357/ab83fd
    [247]
    JIANG K, HUANG S Y, YUAN Z G, et al. Observations of electron vortex at the dipolarization front[J]. Geophysical Research Letters, 2020, 47(13): e2020GL088448 doi: 10.1029/2020gl088448
    [248]
    LIU C M, FU H S, LIU Y Y. Electron vorticity at dipolarization fronts[J]. The Astrophysical Journal, 2021, 911(2): 122 doi: 10.3847/1538-4357/abee1c
    [249]
    SONG L J, ZHOU M, YI Y Y, et al. Force and energy balance of the dipolarization front[J]. Journal of Geophysical Research: Space Physics, 2020, 125(9): e2020JA028278 doi: 10.1029/2020ja028278
    [250]
    WANG L, HUANG C, CAO X, et al. Magnetic energy conversion and transport in the terrestrial magnetotail due to dipolarization fronts[J]. Journal of Geophysical Research: Space Physics, 2020, 125(10): e2020JA028568 doi: 10.1029/2020ja028568
    [251]
    XU Y, FU H S, CAO J B, et al. Electron-scale measurements of antidipolarization front[J]. Geophysical Research Letters, 2021, 48(6): e2020GL092232 doi: 10.1029/2020gl092232
    [252]
    HUANG C, DU A M, GE Y S. Evolution of electron current layer during anti-parallel magnetic reconnection[J]. Plasma Physics and Controlled Fusion, 2020, 62(5): 055014 doi: 10.1088/1361-6587/ab7d49
    [253]
    ZHONG Z H, ZHOU M, TANG R X, et al. Extension of the electron diffusion region in a guide field magnetic reconnection at magnetopause[J]. The Astrophysical Journal Letters, 2020, 892(1): L5 doi: 10.3847/2041-8213/ab7b7c
    [254]
    HUANG K, LU Q M, WANG R S, et al. Spontaneous growth of the reconnection electric field during magnetic reconnection with a guide field: a theoretical model and particle-in-cell simulations[J]. Chinese Physics B, 2020, 29(7): 075202 doi: 10.1088/1674-1056/ab8da0
    [255]
    BAI S C, SHI Q Q, LIU T Z, et al. Ion-scale flux rope observed inside a hot flow anomaly[J]. Geophysical Research Letters, 2020, 47(5): e2019GL085933 doi: 10.1029/2019gl085933
    [256]
    LI Y X, LI W Y, TANG B B, et al. Quantification of cold-ion beams in a magnetic reconnection jet[J]. Frontiers in Astronomy and Space Sciences, 2021, 8: 745264 doi: 10.3389/fspas.2021.745264
    [257]
    WANG S M, WANG R S, LU Q M, et al. Large‐scale parallel electric field colocated in an extended electron diffusion region during the magnetosheath magnetic reconnection[J]. Geophysical Research Letters, 2021, 48(23): e2021GL094879
    [258]
    ZHOU M, MAN H Y, YANG Y, et al. Measurements of energy dissipation in the electron diffusion region[J]. Geophysical Research Letters, 2021, 48(24): e2021GL096372 doi: 10.1029/2021gl096372
    [259]
    HUANG H T, YU Y Q, CAO J B, et al. On the ion distributions at the separatrices during symmetric magnetic reconnection[J]. Earth and Planetary Physics, 2021, 5(2): 205-217 doi: 10.26464/epp2021019
    [260]
    CHEN C X. Preservation and variation of ion-to-electron temperature ratio in the plasma sheet in geo-magnetotail[J]. Earth and Planetary Physics, 2021, 5(4): 337-347 doi: 10.26464/epp2021035
    [261]
    WU T, FU S Y, XIE L, et al. Cluster observations on time-of-flight effect of oxygen ions in magnetotail reconnection exhaust region[J]. Geophysical Research Letters, 2020, 47(3): e2019GL085200 doi: 10.1029/2019gl085200
    [262]
    HUANG K, LIU Y H, LU Q M, et al. Scaling of magnetic reconnection with a limited X-line extent[J]. Geophysical Research Letters, 2020, 47(19): e2020GL088147 doi: 10.1029/2020gl088147
    [263]
    DAI L, WANG C, LAVRAUD B. Kinetic imprints of ion acceleration in collisionless magnetic reconnection[J]. The Astrophysical Journal, 2021, 919(1): 15 doi: 10.3847/1538-4357/ac0fde
    [264]
    HUANG S Y, XIONG Q Y, SONG L F, et al. Electron-only reconnection in an ion-scale current sheet at the magnetopause[J]. The Astrophysical Journal, 2021, 922(1): 54 doi: 10.3847/1538-4357/ac2668
    [265]
    LIU D K, LU S, LU Q M, et al. Spontaneous onset of collisionless magnetic reconnection on an electron scale[J]. The Astrophysical Journal Letters, 2020, 890(2): L15 doi: 10.3847/2041-8213/ab72fe
    [266]
    LU S, WANG R S, LU Q M, et al. Magnetotail reconnection onset caused by electron kinetics with a strong external driver[J]. Nature Communications, 2020, 11(1): 5049 doi: 10.1038/s41467-020-18787-w
    [267]
    LIU D K, HUANG K, LU Q M, et al. The evolution of collisionless magnetic reconnection from electron scales to ion scales[J]. The Astrophysical Journal, 2021, 922(1): 51 doi: 10.3847/1538-4357/ac2900
    [268]
    TANG S Y, ZHANG Y C, DAI L, et al. MMS observation of the hall field in an asymmetric magnetic reconnection with guide field[J]. The Astrophysical Journal, 2021, 922(2): 96 doi: 10.3847/1538-4357/ac31b1
    [269]
    WANG R S, LU Q M, LU S, et al. Physical implication of two types of reconnection electron diffusion regions with and without ion-coupling in the magnetotail current sheet[J]. Geophysical Research Letters, 2020, 47(21): e2020GL088761 doi: 10.1029/2020gl088761
    [270]
    LI W Y, GRAHAM D B, KHOTYAINTSEV Y V, et al. Electron Bernstein waves driven by electron crescents near the electron diffusion region[J]. Nature Communications, 2020, 11(1): 141 doi: 10.1038/s41467-019-13920-w
    [271]
    CHEN G, FU H S, ZHANG Y, et al. An unexpected whistler wave generation around dipolarization front[J]. Journal of Geophysical Research: Space Physics, 2021, 126(5): e2020JA028957 doi: 10.1029/2020ja028957
    [272]
    REN Y, DAI L, WANG C, et al. Statistical characteristics in the spectrum of whistler waves near the diffusion region of dayside magnetopause reconnection[J]. Geophysical Research Letters, 2021, 48(1): e2020GL090816 doi: 10.1029/2020gl090816
    [273]
    YU X C, LU Q M, WANG R S, et al. Simultaneous observation of whistler waves and electron cyclotron harmonic waves in the separatrix region of magnetopause reconnection[J]. Journal of Geophysical Research: Space Physics, 2021, 126(10): e2021JA029609 doi: 10.1029/2021ja029609
    [274]
    TANG B B, LI W Y, GRAHAM D B, et al. Lower hybrid waves at the magnetosheath separatrix region[J]. Geophysical Research Letters, 2020, 47(20): e2020GL089880 doi: 10.1029/2020gl089880
    [275]
    LI W Y, KHOTYAINTSEV Y V, TANG B B, et al. Upper-hybrid waves driven by meandering electrons around magnetic reconnection X line[J]. Geophysical Research Letters, 2021, 48(16): e2021GL093164 doi: 10.1029/2021gl093164
    [276]
    SHU Y K, LU S, LU Q M, et al. Energy budgets from collisionless magnetic reconnection site to reconnection front[J]. Journal of Geophysical Research: Space Physics, 2021, 126(10): e2021JA029712 doi: 10.1029/2021ja029712
    [277]
    YI Y Y, ZHOU M, SONG L J, et al. Energy conversion during multiple X-lines reconnection[J]. Physics of Plasmas, 2020, 27(12): 122905 doi: 10.1063/5.0018269
    [278]
    CHANG C, HUANG K, LU Q M, et al. Particle-in-cell simulations of electrostatic solitary waves in asymmetric magnetic reconnection[J]. Journal of Geophysical Research: Space Physics, 2021, 126(7): e2021JA029290 doi: 10.1029/2021ja029290
    [279]
    FU H S, CHEN F, CHEN Z Z, et al. First measurements of electrons and waves inside an electrostatic solitary wave[J]. Physical Review Letters, 2020, 124(9): 095101 doi: 10.1103/PhysRevLett.124.095101
    [280]
    GUO Z Z, FU H S, CAO J B, et al. Broadband electrostatic waves behind dipolarization front: observations and analyses[J]. Journal of Geophysical Research: Space Physics, 2021, 126(12): e2021JA029900 doi: 10.1029/2021ja029900
    [281]
    YU Y, FU H S, CAO J B, et al. Electron thermalization and electrostatic turbulence caused by flow reversal in dipolarizing flux tubes[J]. The Astrophysical Journal, 2022, 926(1): 22 doi: 10.3847/1538-4357/ac42c5
    [282]
    YU X C, LU Q M, WANG R S, et al. Mms observations of broadband electrostatic waves in electron diffusion region of magnetotail reconnection[J]. Journal of Geophysical Research: Space Physics, 2021, 126(3): e2020JA028882 doi: 10.1029/2020ja028882
    [283]
    TANG B B, LI W Y, LE A, et al. Electron mixing and isotropization in the exhaust of asymmetric magnetic reconnection with a guide field[J]. Geophysical Research Letters, 2020, 47(14): e2020GL087159 doi: 10.1029/2020gl087159
    [284]
    LAI H R, JIA Y D, RUSSELL C T, et al. Magnetic flux circulation in the Saturnian magnetosphere as constrained by Cassini observations in the inner magnetosphere[J]. Journal of Geophysical Research: Space Physics, 2021, 126(11): e2021JA029304 doi: 10.1029/2021ja029304
    [285]
    HAO Y X, SUN Y X, ROUSSOS E, et al. The formation of Saturn’s and Jupiter’s electron radiation belts by magnetospheric electric fields[J]. The Astrophysical Journal Letters, 2020, 905(1): L10 doi: 10.3847/2041-8213/abca3f
    [286]
    SUN Y X, ROUSSOS E, HAO Y X, et al. Saturn’s inner magnetospheric convection in the view of zebra stripe patterns in energetic electron spectra[J]. Journal of Geophysical Research: Space Physics, 2021, 126(10): e2021JA029600 doi: 10.1029/2021ja029600
    [287]
    GUO R L, YAO Z H, DUNN W R, et al. A rotating azimuthally distributed auroral current system on Saturn revealed by the Cassini spacecraft[J]. The Astrophysical Journal Letters, 2021, 919(2): L25 doi: 10.3847/2041-8213/ac26b5
    [288]
    PAN D X, YAO Z H, GUO R L, et al. A statistical survey of low-frequency magnetic fluctuations at saturn[J]. Journal of Geophysical Research: Space Physics, 2021, 126(2): e2020JA028387 doi: 10.1029/2020ja028387
    [289]
    LONG M Y, GU X D, NI B B, et al. Global distribution of electrostatic electron cyclotron harmonic waves in Saturn’s magnetosphere: a survey of over-13-year Cassini RPWS observations[J]. Journal of Geophysical Research: Planets, 2021, 126(4): e2020JE006800 doi: 10.1029/2020je006800
    [290]
    ZHANG H, LI Q, TANG R X, et al. Background parameter effects on linear-nonlinear chorus wave growth in the planetary magnetosphere[J]. The Astrophysical Journal, 2020, 904(2): 105 doi: 10.3847/1538-4357/abbeee
    [291]
    YUAN C J, ROUSSOS E, WEI Y, et al. Sustaining Saturn's electron radiation belts through episodic, global-scale relativistic electron flux enhancements[J]. Journal of Geophysical Research: Space Physics, 2020, 125(5): e2019JA027621 doi: 10.1029/2019ja027621
    [292]
    YUAN C J, ROUSSOS E, WEI Y, et al. Cassini observation of relativistic electron butterfly distributions in Saturn’s inner radiation belts: evidence for acceleration by local processes[J]. Geophysical Research Letters, 2021, 48(14): e2021GL092690 doi: 10.1029/2021gl092690
    [293]
    XU S B, HUANG S Y, YUAN Z G, et al. Global spatial distribution of dipolarization fronts in the Saturn’s magnetosphere: Cassini observations[J]. Geophysical Research Letters, 2021, 48(17): e2021GL092701 doi: 10.1029/2021gl092701
    [294]
    XU Y, GUO R L, YAO Z H, et al. Properties of plasmoids observed in Saturn’s dayside and nightside magnetodisc[J]. Geophysical Research Letters, 2021, 48(24): e2021GL096765 doi: 10.1029/2021gl096765
    [295]
    LIU Z Y, ZONG Q G, BLANC M, et al. Statistics on Jupiter’s current sheet with Juno data: geometry, magnetic fields and energetic particles[J]. Journal of Geophysical Research: Space Physics, 2021, 126(11): e2021JA029710 doi: 10.1029/2021ja029710
    [296]
    ZHANG B Z, DELAMERE P A, YAO Z H, et al. How Jupiter’s unusual magnetospheric topology structures its aurora[J]. Science Advances, 2021, 7(15): eabd1204 doi: 10.1126/sciadv.abd1204
    [297]
    WANG Y X, GUO X C, WANG C, et al. MHD modeling of the background solar wind in the inner heliosphere from 0.1 to 5.5 AU: comparison with in situ observations[J]. Space Weather, 2020, 18(6): e2019SW002262 doi: 10.1029/2019sw002262
    [298]
    GUO R L, YAO Z H, GRODENT D, et al. Jupiter’s double-arc aurora as a signature of magnetic reconnection: simultaneous observations from HST and juno[J]. Geophysical Research Letters, 2021, 48(14): e2021GL093964 doi: 10.1029/2021gl093964
    [299]
    YAO Z H, DUNN W R, WOODFIELD E E, et al. Revealing the source of Jupiter’s x-ray auroral flares[J]. Science Advances, 2021, 7(28): eabf0851 doi: 10.1126/sciadv.abf0851
    [300]
    YAO Z H, BONFOND B, CLARK G, et al. Reconnection- and dipolarization-driven auroral dawn storms and injections[J]. Journal of Geophysical Research: Space Physics, 2020, 125(8): e2019JA027663 doi: 10.1029/2019ja027663
    [301]
    WANG Y X, BLANC M, LOUIS C, et al. A preliminary study of magnetosphere-ionosphere-thermosphere coupling at Jupiter: Juno multi-instrument measurements and modeling tools[J]. Journal of Geophysical Research: Space Physics, 2021, 126(9): e2021JA029469 doi: 10.1029/2021ja029469
    [302]
    DUBININ E, FRAENZ M, MODOLO R, et al. Induced magnetic fields and plasma motions in the inner part of the martian magnetosphere[J]. Journal of Geophysical Research: Space Physics, 2021, 126(12): e2021JA029542 doi: 10.1029/2021ja029542
    [303]
    SHAN L C, TSURUTANI B T, OHSAWA Y, et al. Observational evidence for fast mode periodic small-scale shocks: a new type of plasma phenomenon[J]. The Astrophysical Journal Letters, 2020, 905(1): L4 doi: 10.3847/2041-8213/abcb02
    [304]
    SHAN L C, DU A M, TSURUTANI B T, et al. In situ observations of the formation of periodic collisionless plasma shocks from fast mode waves[J]. The Astrophysical Journal Letters, 2020, 888(2): L17 doi: 10.3847/2041-8213/ab5db3
    [305]
    WANG M, XIE L, LEE L C, et al. A 3 D parametric martian bow shock model with the effects of Mach number, dynamic pressure, and the interplanetary magnetic field[J]. The Astrophysical Journal, 2020, 903(2): 125 doi: 10.3847/1538-4357/abbc04
    [306]
    WANG M, LEE L C, XIE L H, et al. Effect of solar wind density and velocity on the subsolar standoff distance of the martian magnetic pileup boundary[J]. Astronomy & Astrophysics, 2021, 651: A22 doi: 10.1051/0004-6361/202140511
    [307]
    WU M Y, CHEN Y J, DU A M, et al. Statistical properties of small-scale linear magnetic holes in the martian magnetosheath[J]. The Astrophysical Journal, 2021, 916(2): 104 doi: 10.3847/1538-4357/ac090b
    [308]
    GAO J W, RONG Z J, KLINGER L, et al. A spherical harmonic martian crustal magnetic field model combining data sets of MAVEN and MGS[J]. Earth and Space Science, 2021, 8(10): e2021EA001860 doi: 10.1029/2021ea001860
    [309]
    DU A M, ZHANG Y, LI H Y, et al. The Chinese mars ROVER fluxgate magnetometers[J]. Space Science Reviews, 2020, 216(8): 135 doi: 10.1007/s11214-020-00766-8
    [310]
    ZHANG C, RONG Z J, NILSSON H, et al. MAVEN observations of periodic low-altitude plasma clouds at mars[J]. The Astrophysical Journal Letters, 2021, 922(2): L33 doi: 10.3847/2041-8213/ac3a7d
    [311]
    WANG J, YU J, XU X J, et al. MAVEN observations of magnetic reconnection at martian induced magnetopause[J]. Geophysical Research Letters, 2021, 48(21): e2021GL095426 doi: 10.1029/2021gl095426
    [312]
    HUANG S Y, LIN R T, YUAN Z G, et al. In situ detection of kinetic-size magnetic holes in the martian magnetosheath[J]. The Astrophysical Journal, 2021, 922(2): 107 doi: 10.3847/1538-4357/ac2737
    [313]
    ZOU Y L, ZHU Y, BAI Y F, et al. Scientific objectives and payloads of Tianwen-1, China’s first Mars exploration mission[J]. Advances in Space Research, 2021, 67(2): 812-823 doi: 10.1016/j.asr.2020.11.005
    [314]
    FAN K, FRAENZ M, WEI Y, et al. Deflection of global ion flow by the martian crustal magnetic fields[J]. The Astrophysical Journal Letters, 2020, 898(2): L54 doi: 10.3847/2041-8213/aba519
    [315]
    DUBININ E, FRAENZ M, PÄTZOLD M, et al. Impact of martian crustal magnetic field on the ion escape[J]. Journal of Geophysical Research: Space Physics, 2020, 125(10): e2020JA028010 doi: 10.1029/2020ja028010
    [316]
    CAO Y T, CUI J, WU X S, et al. A survey of photoelectrons on the nightside of mars[J]. Geophysical Research Letters, 2021, 48(2): e2020GL089998 doi: 10.1029/2020gl089998
    [317]
    SUN W J, DEWEY R M, AIZAWA S, et al. Review of mercury’s dynamic magnetosphere: post-MESSENGER era and comparative magnetospheres[J]. Science China Earth Sciences, 2022, 65(1): 25-74 doi: 10.1007/s11430-021-9828-0
    [318]
    ZHONG J, LEE L C, WANG X G, et al. Multiple X-line reconnection observed in mercury’s magnetotail driven by an interplanetary coronal mass ejection[J]. The Astrophysical Journal Letters, 2020, 893(1): L11 doi: 10.3847/2041-8213/ab8380
    [319]
    JANG E, ZHAO J T, YUE C, et al. Energetic ion dynamics near the cusp region of mercury[J]. The Astrophysical Journal, 2020, 892(1): 10 doi: 10.3847/1538-4357/ab74d1
    [320]
    ZHANG C, RONG Z J, GAO J W, et al. The flapping motion of mercury’s magnetotail current sheet: MESSENGER observations[J]. Geophysical Research Letters, 2020, 47(4): e2019GL086011 doi: 10.1029/2019gl086011
    [321]
    ZHAO J T, ZONG Q G, SLAVIN J A, et al. Proton properties in mercury’s magnetotail: a statistical study[J]. Geophysical Research Letters, 2020, 47(19): e2020GL088075 doi: 10.1029/2020gl088075
    [322]
    ZHONG J, WEI Y, LEE L C, et al. Formation of macroscale flux transfer events at mercury[J]. The Astrophysical Journal Letters, 2020, 893(1): L18 doi: 10.3847/2041-8213/ab8566
    [323]
    HUANG S Y, WANG Q Y, SAHRAOUI F, et al. Analysis of turbulence properties in the mercury plasma environment using messenger observations[J]. The Astrophysical Journal, 2020, 891(2): 159 doi: 10.3847/1538-4357/ab7349
    [324]
    XIAO S D, WU M Y, WANG G Q, et al. Survey of 1-Hz waves in the near-Venusian space: venus express observations[J]. Planetary and Space Science, 2020, 187: 104933 doi: 10.1016/j.pss.2020.104933
    [325]
    XU Q, XU X J, ZHANG T L, et al. The venus express observation of venus’ induced magnetosphere boundary at solar maximum[J]. Astronomy & Astrophysics, 2021, 652: A113 doi: 10.1051/0004-6361/202141391
    [326]
    XIAO S D, WU M Y, WANG G Q, et al. The spectral scalings of magnetic fluctuations upstream and downstream of the Venusian bow shock[J]. Earth, Planets and Space, 2021, 73(1): 13 doi: 10.1186/s40623-020-01343-7
    [327]
    XIAO S D, WU M Y, WANG G Q, et al. Turbulence in the near-Venusian space: venus express observations[J]. Earth and Planetary Physics, 2020, 4(1): 82-87 doi: 10.26464/epp2020012
    [328]
    XIAO S D, ZHANG T L, VÖRÖS Z, et al. Turbulence near the Venusian bow shock: venus express observations[J]. Journal of Geophysical Research: Space Physics, 2020, 125(2): e2019JA027190 doi: 10.1029/2019ja027190
    [329]
    GAO J W, RONG Z J, PERSSON M, et al. In situ observations of the ion diffusion region in the Venusian magnetotail[J]. Journal of Geophysical Research: Space Physics, 2021, 126(1): e2020JA028547 doi: 10.1029/2020ja028547
    [330]
    ZHANG H, ZHONG J, ZHANG T X, et al. A meandering lunar wake produced by the pickup of reflected solar-wind ions[J]. Geophysical Research Letters, 2021, 48(24): e2021GL096039 doi: 10.1029/2021gl096039
    [331]
    ZHANG T X, ZHANG H, LAI H R, et al. Asymmetric lunar magnetic perturbations produced by reflected solar wind particles[J]. The Astrophysical Journal Letters, 2020, 893(2): L36 doi: 10.3847/2041-8213/ab8640
    [332]
    DUNLOP M W, DONG X C, WANG T Y, et al. Curlometer technique and applications[J]. Journal of Geophysical Research: Space Physics, 2021, 126(11): e2021JA029538 doi: 10.1029/2021ja029538
    [333]
    SHEN C, ZENG G, ZHANG C, et al. Determination of the configurations of boundaries in space[J]. Journal of Geophysical Research: Space Physics, 2020, 125(9): e2020JA028163 doi: 10.1029/2020ja028163
    [334]
    SHEN C, ZHANG C, RONG Z J, et al. Nonlinear magnetic gradients and complete magnetic geometry from multispacecraft measurements[J]. Journal of Geophysical Research: Space Physics, 2021, 126(8): e2020JA028846 doi: 10.1029/2020ja028846
    [335]
    SHEN C, ZHOU Y F, MA Y H, et al. A general algorithm for the linear and quadratic gradients of physical quantities based on 10 or more point measurements[J]. Journal of Geophysical Research: Space Physics, 2021, 126(6): e2021JA029121 doi: 10.1029/2021ja029121
    [336]
    ZHU Y, DU A M, LUO H, et al. The fluxgate magnetometer of the Low Orbit Pearl Satellites (LOPS): overview of in-flight performance and initial results[J]. Geoscientific Instrumentation, Methods and Data Systems, 2021, 10(2): 227-243 doi: 10.5194/gi-10-227-2021
    [337]
    SHEN C, ZHOU Y F, GAO L, et al. Measurements of the net charge density of space plasmas[J]. Journal of Geophysical Research: Space Physics, 2021, 126(12): e2021JA029511 doi: 10.1029/2021ja029511
    [338]
    LI K, ANDRÉ M, ERIKSSON A, et al. High-latitude cold ion outflow inferred from the cluster wake observations in the magnetotail lobes and the polar cap region[J]. Frontiers in Physics, 2021, 9: 743316 doi: 10.3389/fphy.2021.743316
    [339]
    HUANG Y, DAI L, WANG C, et al. A new inversion method for reconstruction of plasmaspheric He+ density from EUV images[J]. Earth and Planetary Physics, 2021, 5(2): 218-222 doi: 10.26464/epp2021020
    [340]
    WANG Z, FU H S, OLSHEVSKY V, et al. Extending the FOTE method to three-dimensional plasma flow fields[J]. The Astrophysical Journal Supplement Series, 2020, 249(1): 10 doi: 10.3847/1538-4365/ab95a0
    [341]
    FU H S, WANG Z, ZONG Q G, et al. Methods for finding magnetic nulls and reconstructing field topology: a review[M]//ZONG Q G, ESCOUBET P, SIBECK D, et al. Dayside Magnetosphere Interactions. Washington: American Geophysical Union, 2020: 153-172.
    [342]
    TIAN A M, XIAO K, DEGELING A W, et al. Reconstruction of plasma structure with anisotropic pressure: application to Pc5 compressional wave[J]. The Astrophysical Journal, 2020, 889(1): 35 doi: 10.3847/1538-4357/ab6296
    [343]
    YU X D, YUAN Z G, XUE Z X. Second-harmonic generation of electromagnetic emissions in a magnetized plasma: kinetic theory approach[J]. Geophysical Research Letters, 2021, 48(5): e2020GL091762 doi: 10.1029/2020gl091762
    [344]
    LI Mu, HE Fei, LIN Ruilin, et al. Prediction of the geomagnetic disturbances in high-latitude region with Weimer model[J]. Chinese Journal of Geophysics, 2020, 63(6): 2159-2169 doi: 10.6038/cjg2020N0379
    [345]
    ZHANG J J, YU Y Q, WANG C, et al. Measurements and simulations of the geomagnetically induced currents in low-latitude power networks during geomagnetic storms[J]. Space Weather, 2020, 18(8): e2020SW002549 doi: 10.1029/2020sw002549
    [346]
    XU S B, HUANG S Y, YUAN Z G, et al. Prediction of the dst index with bagging ensemble-learning algorithm[J]. The Astrophysical Journal Supplement Series, 2020, 248(1): 14 doi: 10.3847/1538-4365/ab880e
    [347]
    YANG X C, WANG L. A study of the performances of widely used external magnetic field models in the outer zone of the Earth’s radiation belts by comparing the field observations from van Allen probe-a and the model estimations[J]. Space Weather, 2021, 19(12): e2021SW002722 doi: 10.1029/2021sw002722
    [348]
    YU X D, YUAN Z G, YU J. Revisit the analytical approximation of transit-time scattering for fast magnetosonic waves[J]. Geophysical Research Letters, 2020, 47(16): e2020GL088434 doi: 10.1029/2020gl088434
    [349]
    GUO D Y, FU S, XIANG Z, et al. Prediction of dynamic plasmapause location using a neural network[J]. Space Weather, 2021, 19(5): e2020SW002622 doi: 10.1029/2020sw002622
    [350]
    ZHANG H, FU S Y, XIE L, et al. Relativistic electron flux prediction at geosynchronous orbit based on the neural network and the quantile regression method[J]. Space Weather, 2020, 18(9): e2020SW002445 doi: 10.1029/2020sw002445
    [351]
    ZOU Z Y, SHPRITS Y Y, NI B B, et al. An artificial neural network model of electron fluxes in the Earth’s central plasma sheet: a THEMIS survey[J]. Astrophysics and Space Science, 2020, 365(6): 100 doi: 10.1007/s10509-020-03819-0
    [352]
    WANG J Z, ZHU Q, GU X D, et al. An empirical model of the global distribution of plasmaspheric hiss based on van Allen probes EMFISIS measurements[J]. Earth and Planetary Physics, 2020, 4(3): 246-265 doi: 10.26464/epp2020034
    [353]
    ZHU Jia’nan, GUO Jianguang, NI Binbin, et al. Multi-dimensional data assimilation and analyses of Earth’s outer electron radiation belt[J]. Chinese Journal of Geophysics, 2021, 64(5): 1496-1507
    [354]
    GUO Y H, WANG C, WEI F, et al. A lunar-based soft X-ray imager (LSXI) for the Earth’s magnetosphere[J]. Science China Earth Sciences, 2021, 64(7): 1026-1035 doi: 10.1007/s11430-020-9792-5
    [355]
    SUN T R, WANG C, CONNOR H K, et al. Deriving the magnetopause position from the soft X-ray image by using the tangent fitting approach[J]. Journal of Geophysical Research: Space Physics, 2020, 125(9): e2020JA028169 doi: 10.1029/2020ja028169
    [356]
    SUN T R, WANG X, WANG C. Tangent directions of the cusp boundary derived from the simulated soft X-ray image[J]. Journal of Geophysical Research: Space Physics, 2021, 126(3): e2020JA028314 doi: 10.1029/2020ja028314
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(293) PDF Downloads(104) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return