Volume 42 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
DU Yan, DONG Xiaolong, JIANG Xingwei, ZHANG Yuhong, ZHU Di, WANG Minyang, WU Wei, WANG Xiangpeng, ZHAO Zhangzhe, XU Xing’ou, TANG Shilin, JING Zhiyou, LI Yineng, CHEN Kun, CHEN Wen. Ocean Surface Current Multiscale Observation Mission (in Chinese). Chinese Journal of Space Science, 2022, 42(5): 849-861 doi: 10.11728/cjss2022.05.2022-0047
Citation: DU Yan, DONG Xiaolong, JIANG Xingwei, ZHANG Yuhong, ZHU Di, WANG Minyang, WU Wei, WANG Xiangpeng, ZHAO Zhangzhe, XU Xing’ou, TANG Shilin, JING Zhiyou, LI Yineng, CHEN Kun, CHEN Wen. Ocean Surface Current Multiscale Observation Mission (in Chinese). Chinese Journal of Space Science, 2022, 42(5): 849-861 doi: 10.11728/cjss2022.05.2022-0047

Ocean Surface Current Multiscale Observation Mission

doi: 10.11728/cjss2022.05.2022-0047
  • Received Date: 2022-09-02
  • Accepted Date: 2022-09-10
  • Rev Recd Date: 2022-09-10
  • Available Online: 2022-09-21
  • OSCOM innovatively proposed the Doppler Scatterometer (DOPS) measurement principle, which could detect ocean surface current, ocean surface vector wind, and ocean surface wave spectrum (abbreviation: current-wind-wave) simultaneously. Using DOPS, a real-aperture radar, by a dual-frequency (Ka-Ku) with conically scanned rotating multi-pencil-beam antenna, OSCOM could conduct the integrated observations of current-wind-wave with a swath of more than 1000 km and a high-resolution of kilometer spatial scale. OSCOM will break through the research bottlenecks of ocean sub-mesoscale and non-equilibrium dynamics, ocean multi-scale interactions, and air-sea coupling, and support the theoretical research in ocean sciences and climate change. With the launch of the OSCOM, the application of sea surface current observations will improve the numerical model study, laying the foundation for numerical simulation, assimilation, and forecasting of oceanic non-equilibrium dynamical processes, achieving significant improvements in ocean and ocean-atmosphere coupled models. The application of OSCOM current observations, together with the other multi-source satellite dataset, including the high-resolution SST and ocean surface color, will provide support for the research in marine biogeochemical cycles and carbon budget, meeting the need of the national strategy. The implementation of OSCOM scientific satellite is of vital significance to the advance of the study and the application of satellite observations in Earth Science, leading to the implementation of the applied satellites in China.

     

  • loading
  • [1]
    CHEN R, FLIERL G R, WUNSCH C. A description of local and nonlocal eddy–mean flow interaction in a global eddy-permitting state estimate[J]. Journal of Physical Oceanography, 2014, 44(9): 2336-2352 doi: 10.1175/JPO-D-14-0009.1
    [2]
    FERRARI R, WUNSCH C. Ocean circulation kinetic energy: reservoirs, sources, and sinks[J]. Annual Review of Fluid Mechanics, 2009, 41: 253-282 doi: 10.1146/annurev.fluid.40.111406.102139
    [3]
    DOHAN K, MAXIMENKO N. Monitoring ocean currents with satellite sensors[J]. Oceanography, 2010, 23(4): 94 doi: 10.5670/oceanog.2010.08
    [4]
    DOHAN K. Ocean surface currents from satellite data[J]. Journal of Geophysical Research: Oceans, 2017, 122(4): 2647-2651 doi: 10.1002/2017JC012961
    [5]
    LEE T, HAKKINEN S, KELLY K, et al. Satellite observations of ocean circulation changes associated with climate variability[J]. Oceanography, 2010, 23(4): 70-81 doi: 10.5670/oceanog.2010.06
    [6]
    LEGECKIS R, BROWN C W, BONJEAN F, et al. The influence of tropical instability waves on phytoplankton blooms in the wake of the Marquesas Islands during 1998 and on the currents observed during the drift of the Kon-Tiki in 1947[J]. Geophysical Research Letters, 2004, 31(23): L23307
    [7]
    YODER J A, DONEY S C, SIEGEL D A, et al. Study of marine ecosystems and biogeochemistry now and in the future: examples of the unique contributions from space[J]. Oceanography, 2010, 23(4): 104-117 doi: 10.5670/oceanog.2010.09
    [8]
    BOCCALETTI G, FERRARI R, ADCROFT A, et al. The vertical structure of ocean heat transport[J]. Geophysical Research Letters, 2005, 32(10): L10603 doi: 10.1029/2005GL022474
    [9]
    FREEMAN A, ZLOTNICKI V, LIU T, et al. Ocean measurements from space in 2025[J]. Oceanography, 2010, 23(4): 144-161 doi: 10.5670/oceanog.2010.12
    [10]
    TALLEY L D, PICKARD G L, EMERY W J, et al. Descriptive Physical Oceanography: An Introduction[M]. 6th ed. Boston: Academic Press, 2011
    [11]
    KLEIN P, LAPEYRE G, SIEGELMAN L, et al. Ocean-scale interactions from space[J]. Earth and Space Science, 2019, 6(5): 795-817 doi: 10.1029/2018EA000492
    [12]
    MCWILLIAMS J C. Submesoscale currents in the ocean[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2016, 472(2189): 20160117 doi: 10.1098/rspa.2016.0117
    [13]
    CHELTON D B. Report of the High-Resolution Ocean Topography Science Working Group Meeting[R]. Corvallis: Oregon State University, 2001
    [14]
    MUNK W H. On the wind-driven ocean circulation[J]. Journal of the Atmospheric Sciences, 1950, 7(2): 80-93
    [15]
    STOMMEL H. The westward intensification of wind-driven ocean currents[J]. Eos, Transactions American Geophysical Union, 1948, 29(2): 202-206 doi: 10.1029/TR029i002p00202
    [16]
    SCHMITZ JR W J. On the World Ocean Circulation. Volume 1. Some Global Features/North Atlantic Circulation[R]. Woods Hole: Woods Hole Oceanographic Institution, 1996
    [17]
    SPARROW M, CHAPMAN P, GOULD J. The World Ocean Circulation Experiment (WOCE) Hydrographic Atlas Series (4 volumes). International WOCE Project Office, Southampton, United Kingdom, 2005-2006
    [18]
    LUMPKIN R, ÖZGÖKMEN T, CENTURIONI L. Advances in the application of surface drifters[J]. Annual Review of Marine Science, 2017, 9: 59-81 doi: 10.1146/annurev-marine-010816-060641
    [19]
    NIILER P P, MAXIMENKO N A, MCWILLIAMS J C. Dynamically balanced absolute sea level of the global ocean derived from near-surface velocity observations[J]. Geophysical Research Letters, 2003, 30(22): 2164
    [20]
    RIO M H, HERNANDEZ F. High-frequency response of wind-driven currents measured by drifting buoys and altimetry over the world ocean[J]. Journal of Geophysical Research: Oceans, 2003, 108(C8): 3283 doi: 10.1029/2002JC001655
    [21]
    PARK J J, KIM K, KING B A, et al. An advanced method to estimate deep currents from profiling floats[J]. Journal of Atmospheric and Oceanic Technology, 2005, 22(8): 1294-1304 doi: 10.1175/JTECH1748.1
    [22]
    ROEMMICH D, GILSON J. The 2004-2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program[J]. Progress in Oceanography, 2009, 82(2): 81-100 doi: 10.1016/j.pocean.2009.03.004
    [23]
    CHAPRON B, COLLARD F, ARDHUIN F. Direct measurements of ocean surface velocity from space: interpretation and validation[J]. Journal of Geophysical Research: Oceans, 2005, 110(C7): C07008
    [24]
    EMERY W J, BALDWIN D, MATTHEWS D. Maximum cross correlation automatic satellite image navigation and attitude corrections for open-ocean image navigation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(1): 33-42 doi: 10.1109/TGRS.2002.808061
    [25]
    FU L L. Pathways of eddies in the South Atlantic Ocean revealed from satellite altimeter observations[J]. Geophysical Research Letters, 2006, 33(14): L14610 doi: 10.1029/2006GL026245
    [26]
    LIU A K, HSU M K. Deriving ocean surface drift using multiple SAR sensors[J]. Remote Sensing, 2009, 1(3): 266 doi: 10.3390/rs1030266
    [27]
    FU L L, CHRISTENSEN E J, YAMARONE JR C A, et al. TOPEX/POSEIDON mission overview[J]. Journal of Geophysical Research: Oceans, 1994, 99(C12): 24369-24381 doi: 10.1029/94JC01761
    [28]
    BONJEAN F, LAGERLOEF G S E. Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean[J]. Journal of Physical Oceanography, 2002, 32(10): 2938-2954 doi: 10.1175/1520-0485(2002)032<2938:DMAAOT>2.0.CO;2
    [29]
    CHELTON D B, SCHLAX M G, SAMELSON R M. Global observations of nonlinear mesoscale eddies[J]. Progress in Oceanography, 2011, 91(2): 167-216 doi: 10.1016/j.pocean.2011.01.002
    [30]
    DUCET N, LE TRAON P Y, REVERDIN G. Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2[J]. Journal of Geophysical Research: Oceans, 2000, 105(C8): 19477-19498 doi: 10.1029/2000JC900063
    [31]
    QIU B, CHEN S M, KLEIN P, et al. Reconstructing upper-ocean vertical velocity field from sea surface height in the presence of unbalanced motion[J]. Journal of Physical Oceanography, 2020, 50(1): 55-79 doi: 10.1175/JPO-D-19-0172.1
    [32]
    SU Z, WANG J B, KLEIN P, et al. Ocean submesoscales as a key component of the global heat budget[J]. Nature Communications, 2018, 9(1): 775 doi: 10.1038/s41467-018-02983-w
    [33]
    MCGILLICUDDY JR D J. Mechanisms of physical-biological-biogeochemical interaction at the oceanic mesoscale[J]. Annual Review of Marine Science, 2016, 8: 125 doi: 10.1146/annurev-marine-010814-015606
    [34]
    LAGERLOEF G S E, MITCHUM G T, LUKAS R B, et al. Tropical Pacific near-surface currents estimated from altimeter, wind, and drifter data[J]. Journal of Geophysical Research: Oceans, 1999, 104(C10): 23313-23326 doi: 10.1029/1999JC900197
    [35]
    WANG M Y, XIE S P, SHEN S S P, et al. Rossby and Yanai modes of tropical instability waves in the equatorial Pacific Ocean and a diagnostic model for surface currents[J]. Journal of Physical Oceanography, 2020, 50(10): 3009-3024 doi: 10.1175/JPO-D-20-0063.1
    [36]
    LUMPKIN R, JOHNSON G C. Global ocean surface velocities from drifters: mean, variance, El Niño–Southern Oscillation response, and seasonal cycle[J]. Journal of Geophysical Research: Oceans, 2013, 118(6): 2992-3006 doi: 10.1002/jgrc.20210
    [37]
    GOMMENGINGER C, CHAPRON B, HOGG A, et al. SEASTAR: a mission to study ocean submesoscale dynamics and small-scale atmosphere-ocean processes in coastal, shelf and polar seas[J]. Frontiers in Marine Science, 2019, 6: 457 doi: 10.3389/fmars.2019.00457
    [38]
    ARDHUIN F, BRANDT P, GAULTIER L, et al. SKIM, a candidate satellite mission exploring global ocean currents and waves[J]. Frontiers in Marine Science, 2019, 6: 8 doi: 10.3389/fmars.2019.00008
    [39]
    BAO Q L, DONG X L, ZHU D, et al. The feasibility of ocean surface current measurement using pencil-beam rotating scatterometer[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(7): 3441-3451 doi: 10.1109/JSTARS.2015.2414451
    [40]
    BAO Q L, LIN M S, ZHANG Y G, et al. Ocean surface current inversion method for a Doppler scatterometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(11): 6505-6516 doi: 10.1109/TGRS.2017.2728824
    [41]
    MIAO Y J, DONG X L, BAO Q L, et al. Perspective of a Ku-Ka dual-frequency scatterometer for simultaneous wide-swath ocean surface wind and current measurement[J]. Remote Sensing, 2018, 10(7): 1042 doi: 10.3390/rs10071042
    [42]
    RODRÍGUEZ E, BOURASSA M, CHELTON D, et al. The winds and currents mission concept[J]. Frontiers in Marine Science, 2019, 6: 438 doi: 10.3389/fmars.2019.00438
    [43]
    RODRÍGUEZ E, WINETEER A, PERKOVIC-MARTIN D, et al. Ka-band Doppler scatterometry over a loop current eddy[J]. Remote Sensing, 2020, 12(15): 2388 doi: 10.3390/rs12152388
    [44]
    ARDHUIN F, AKSENOV Y, BENETAZZO A, et al. Measuring currents, ice drift, and waves from space: the Sea surface KInematics Multiscale monitoring (SKIM) concept[J]. Ocean Science, 2018, 14(3): 337-354 doi: 10.5194/os-14-337-2018
    [45]
    LÓPEZ-DEKKER P, ROTT H, PRATS-IRAOLA P, et al. Harmony: an earth explorer 10 mission candidate to observe land, ice, and ocean surface dynamics[C]//2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama, Japan: IEEE, 2019: 8381-8384
    [46]
    CHELTON D B, SCHLAX M G, SAMELSON R M, et al. Prospects for future satellite estimation of small-scale variability of ocean surface velocity and vorticity[J]. Progress in Oceanography, 2019, 173: 256-350 doi: 10.1016/j.pocean.2018.10.012
    [47]
    BYRNE D, MÜNNICH M, FRENGER I, et al. Mesoscale atmosphere ocean coupling enhances the transfer of wind energy into the ocean[J]. Nature Communications, 2016, 7: ncomms11867 doi: 10.1038/ncomms11867
    [48]
    MA X H, JING Z, CHANG P, et al. Western boundary currents regulated by interaction between ocean eddies and the atmosphere[J]. Nature, 2016, 535(7613): 533-537 doi: 10.1038/nature18640
    [49]
    LEDWELL J R, MONTGOMERY E T, POLZIN K L, et al. Evidence for enhanced mixing over rough topography in the abyssal ocean[J]. Nature, 2000, 403(6766): 179-182 doi: 10.1038/35003164
    [50]
    POLZIN K L, TOOLE J M, LEDWELL J R, et al. Spatial variability of turbulent mixing in the abyssal ocean[J]. Science, 1997, 276(5309): 93-96
    [51]
    THOMAS L N, TANDON A, MAHADEVAN A. Submesoscale processes and dynamics[M]//HECHT M W, HASUMI H. Ocean Modeling in an Eddying Regime. Washington: American Geophysical Union, 2008: 17-38
    [52]
    BACHMAN S D, FOX-KEMPER B, TAYLOR J R, et al. Parameterization of frontal symmetric instabilities. I: theory for resolved fronts[J]. Ocean Modelling, 2017, 109: 72 doi: 10.1016/j.ocemod.2016.12.003
    [53]
    FOIS F, HOOGEBOOM P, LE CHEVALIER F, et al. DopSCAT: a mission concept for simultaneous measurements of marine winds and surface currents[J]. Journal of Geophysical Research: Oceans, 2015, 120(12): 7857-7879 doi: 10.1002/2015JC011011
    [54]
    RODRÍGUEZ E, WINETEER A, PERKOVIC-MARTIN D, et al. Estimating ocean vector winds and currents using a Ka-band pencil-beam Doppler scatterometer[J]. Remote Sensing, 2018, 10(4): 576 doi: 10.3390/rs10040576
    [55]
    PEREGRINE D H. Tidal currents[M]//SCHWARTZ M. The Encyclopedia of Beaches and Coastal Environments. New York: Springer, 1984: 816-817
    [56]
    FLEXAS M M, THOMPSON A F, TORRES H S, et al. Global estimates of the energy transfer from the wind to the ocean, with emphasis on near-inertial oscillations[J]. Journal of Geophysical Research: Oceans, 2019, 124(8): 5723-5746 doi: 10.1029/2018JC014453
    [57]
    FRENGER I, GRUBER N, KNUTTI R, et al. Imprint of Southern Ocean eddies on winds, clouds and rainfall[J]. Nature Geoscience, 2013, 6(8): 608-612 doi: 10.1038/ngeo1863
    [58]
    OMAND M M, D’ASARO E A, LEE C M, et al. Eddy-driven subduction exports particulate organic carbon from the spring bloom[J]. Science, 2015, 348(6231): 222-225 doi: 10.1126/science.1260062
    [59]
    RENAULT L, MOLEMAKER M J, GULA J, et al. Control and stabilization of the Gulf Stream by oceanic current interaction with the atmosphere[J]. Journal of Physical Oceanography, 2016, 46(11): 3439-3453 doi: 10.1175/JPO-D-16-0115.1
    [60]
    SMITH S V, MACKENZIE F T. The ocean as a net heterotrophic system: implications from the carbon biogeochemical cycle[J]. Global Biogeochemical Cycles, 1987, 1(3): 187-198 doi: 10.1029/GB001i003p00187
    [61]
    VOLK T, HOFFERT M I. Ocean carbon pumps: analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes[M]//SUNDQUIST E T, BROECKER W S. The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. Washington: American Geophysical Union, 1985: 99-110
    [62]
    FRIEDLINGSTEIN P, JONES M W, O’SULLIVAN M, et al. Global carbon budget 2019[J]. Earth System Science Data, 2019, 11(4): 1783-1838 doi: 10.5194/essd-11-1783-2019
    [63]
    SABINE C L, FEELY R A, GRUBER N, et al. The oceanic sink for anthropogenic CO2[J]. Science, 2004, 305(5682): 367-371 doi: 10.1126/science.1097403
    [64]
    KLEIN P, LAPEYRE G. The oceanic vertical pump induced by mesoscale and submesoscale turbulence[J]. Annual Review of Marine Science, 2009, 1: 351-375 doi: 10.1146/annurev.marine.010908.163704
    [65]
    MCGILLICUDDY JR D J, ANDERSON L A, DONEY S C, et al. Eddy-driven sources and sinks of nutrients in the upper ocean: results from a 0.1° resolution model of the North Atlantic[J]. Global Biogeochemical Cycles, 2003, 17(2): 1035
    [66]
    MCGILLICUDDY JR D J, ANDERSON L A, BATES N R, et al. Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms[J]. Science, 2007, 316(5827): 1021-1026 doi: 10.1126/science.1136256
    [67]
    BALWADA D, SMITH K S, ABERNATHEY R. Submesoscale vertical velocities enhance tracer subduction in an idealized Antarctic Circumpolar Current[J]. Geophysical Research Letters, 2018, 45(18): 9790-9802 doi: 10.1029/2018GL079244
    [68]
    FREILICH M A, MAHADEVAN A. Decomposition of vertical velocity for nutrient transport in the upper ocean[J]. Journal of Physical Oceanography, 2019, 49(6): 1561-1575 doi: 10.1175/JPO-D-19-0002.1
    [69]
    LÉVY M. The modulation of biological production by oceanic mesoscale turbulence[M]//WEISS J B, PROVENZALE A. Transport and Mixing in Geophysical Flows. Berlin, Heidelberg: Springer, 2008: 219-261
    [70]
    MAHADEVAN A, ARCHER D. Modeling the impact of fronts and mesoscale circulation on the nutrient supply and biogeochemistry of the upper ocean[J]. Journal of Geophysical Research: Oceans, 2000, 105(C1): 1209-1225 doi: 10.1029/1999JC900216
    [71]
    MAHADEVAN A. The impact of submesoscale physics on primary productivity of plankton[J]. Annual Review of Marine Science, 2016, 8: 161-184 doi: 10.1146/annurev-marine-010814-015912
    [72]
    RUIZ S, CLARET M, PASCUAL A, et al. Effects of oceanic mesoscale and submesoscale frontal processes on the vertical transport of phytoplankton[J]. Journal of Geophysical Research: Oceans, 2019, 124(8): 5999-6014 doi: 10.1029/2019JC015034
    [73]
    JONES J E, DAVIES A M. Storm surge computations for the Irish Sea using a three-dimensional numerical model including wave–current interaction[J]. Continental Shelf Research, 1998, 18(2/3/4): 201-251
    [74]
    LARGE W G, POND S. Open ocean momentum flux measurements in moderate to strong winds[J]. Journal of Physical Oceanography, 1981, 11(3): 324-336 doi: 10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2
    [75]
    SMITH S D. Wind stress and heat flux over the ocean in gale force winds[J]. Journal of Physical Oceanography, 1980, 10(5): 709-726 doi: 10.1175/1520-0485(1980)010<0709:WSAHFO>2.0.CO;2
    [76]
    FLEMING G R, RATNER M A. Grand challenges in basic energy sciences[J]. Physics Today, 2008, 61(7): 28 doi: 10.1063/1.2963009
    [77]
    KAMACHI M, KURAGANO T, ICHIKAWA H, et al. Operational data assimilation system for the Kuroshio south of Japan: reanalysis and validation[J]. Journal of Oceanography, 2004, 60(2): 303-312 doi: 10.1023/B:JOCE.0000038336.87717.b7
    [78]
    JOHNSON E S, BONJEAN F, LAGERLOEF G S E, et al. Validation and error analysis of OSCAR sea surface currents[J]. Journal of Atmospheric and Oceanic Technology, 2007, 24(4): 688-701 doi: 10.1175/JTECH1971.1
    [79]
    QIU B, CHEN S M, KLEIN P, et al. Seasonality in transition scale from balanced to unbalanced motions in the world ocean[J]. Journal of Physical Oceanography, 2018, 48(3): 591-605 doi: 10.1175/JPO-D-17-0169.1
    [80]
    YU X L, NAVEIRA GARABATO A C, MARTIN A P, et al. An annual cycle of submesoscale vertical flow and restratification in the upper ocean[J]. Journal of Physical Oceanography, 2019, 49(6): 1439-1461 doi: 10.1175/JPO-D-18-0253.1
    [81]
    RIO M H, SANTOLERI R. Improved global surface currents from the merging of altimetry and sea surface temperature data[J]. Remote Sensing of Environment, 2018, 216: 770-785 doi: 10.1016/j.rse.2018.06.003
    [82]
    BOURASSA M A, RODRIGUEZ E, CHELTON D. Winds and currents mission: ability to observe mesoscale AIR/SEA coupling[C]//IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Beijing, China: IEEE, 2016: 7392-7395
    [83]
    JOHNSON J W, WEISSMAN D E, JONES W L. Measurements of ocean surface spectrum from an aircraft using the two-frequency microwave resonance technique[J]. International Journal of Remote Sensing, 1982, 3(4): 383-407 doi: 10.1080/01431168208948411
    [84]
    HAUSER D, TISON C, AMIOT T, et al. SWIM: the first spaceborne wave scatterometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5): 3000-3014 doi: 10.1109/TGRS.2017.2658672
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article Views(365) PDF Downloads(96) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return