Volume 42 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
WANG Cifeng, HU Xiaoyan, ZOU Ziming, LI Yunlong, BAI Xi. Research on the Spatio-temporal Coding Scheme for the Dynamic Earth’s Magnetosphere (in Chinese). Chinese Journal of Space Science, 2022, 42(5): 891-900 doi: 10.11728/cjss2022.05.210825093
Citation: WANG Cifeng, HU Xiaoyan, ZOU Ziming, LI Yunlong, BAI Xi. Research on the Spatio-temporal Coding Scheme for the Dynamic Earth’s Magnetosphere (in Chinese). Chinese Journal of Space Science, 2022, 42(5): 891-900 doi: 10.11728/cjss2022.05.210825093

Research on the Spatio-temporal Coding Scheme for the Dynamic Earth’s Magnetosphere

doi: 10.11728/cjss2022.05.210825093
  • Received Date: 2021-08-25
  • Accepted Date: 2021-11-11
  • Rev Recd Date: 2022-03-13
  • Available Online: 2022-09-19
  • The spatio-temporal subdivision model for the dynamic Earth’s magnetosphere is proposed to realize the multi-layered subdivision for the dynamic and irregular physical space of the magnetosphere drawing on the idea of the global discrete grids for the geoscience data. The distortion of the grids can be convergent within a certain number of subdivision times. Therefore, the subdivision model can be taken as a formalization for the spatio-temporal characteristics of the Earth’s magnetosphere in a certain range. On this basis, encoding and expressing the spatio-temporal grids obtained by subdivision for computer storage and processing is another key problem in constructing the basic spatio-temporal framework for the organization and management of large-scale observation data of the Earth’s magnetosphere. Due to the specific spatio-temporal characteristics, the classical geoscience coding schemes have trouble in fully reflecting the spatio-temporal relations between the grids. Therefore, it is difficult to support the basic spatio-temporal computing between the grids. In this paper, an efficient coding scheme is designed for the drift shell subdivision grids combining the basic ideas of the integral coordinate coding and the Morton coding schemes. On this basis, the spatio-temporal framework for the dynamic Earth’s magnetosphere is constructed which lays the foundation for the efficient organization and processing of geomagnetic data. The experiments carried out show that, the coding efficiency of the scheme is relatively high and it can support efficient neighbor relationship calculation. It provides a solution for the organization and computing of the multi-source, multi-layered, heterogeneous and large-scale observation data of the dynamic Earth’s magnetosphere.

     

  • loading
  • [1]
    KING T, THIEMAN J, ROBERTS A D. SPASE 2.0: a standard data model for space physics[J]. Earth Science Informatics, 2010, 3(1/2): 67-73
    [2]
    徐文耀. 地磁与空间物理资料的组织和相关坐标系[J]. 地球物理学进展, 2006, 21(4): 1043-1060 doi: 10.3969/j.issn.1004-2903.2006.04.002

    XU Wenyao. Data organization in geomagnetism and space physics and relevant coordinate systems[J]. Progress in Geophysics, 2006, 21(4): 1043-1060 doi: 10.3969/j.issn.1004-2903.2006.04.002
    [3]
    李志强, 程承旗, 李爽. 基于GeoSOT-3D的空间对象快速可视化与实验分析[J]. 地球信息科学学报, 2015, 17(7): 810-815

    LI Zhiqiang, CHENG Chengqi, LI Shuang. Research on spatial objects fast visualization based on GeoSOT-3D[J]. Journal of Geo-Information Science, 2015, 17(7): 810-815
    [4]
    吴立新, 余接情. 基于球体退化八叉树的全球三维网格与变形特征[J]. 地理与地理信息科学, 2009, 25(1): 1-4

    WU Lixin, YU Jieqing. Global 3D-grid based on sphere degenerated octree and its distortion features[J]. Geography and Geo-Information Science, 2009, 25(1): 1-4
    [5]
    康栋贺, 邹自明, 胡晓彦, 等. 支持时空耦合计算的HTM-ST日地空间系统数据组织模型[J]. 地球信息科学学报, 2017, 19(6): 735-743 doi: 10.3969/j.issn.1560-8999.2017.06.002

    KANG Donghe, ZOU Ziming, HU Xiaoyan, et al. HTM-ST: A data model supporting spatio-temporal coupled computation for solar-terrestrial system[J]. Journal of Geo-Information Science, 2017, 19(6): 735-743 doi: 10.3969/j.issn.1560-8999.2017.06.002
    [6]
    赵学胜, 贲进, 孙文彬, 等. 地球剖分格网研究进展综述[J]. 测绘学报, 2016, 45(S1): 1-14 doi: 10.11947/j.AGCS.2016.F001

    ZHAO Xuesheng, BEN Jin, SUN Wenbin, et al. Overview of the research progress in the Earth tessellation grid[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(S1): 1-14 doi: 10.11947/j.AGCS.2016.F001
    [7]
    曹雪峰. 地球圈层空间网格理论与算法研究[D]. 郑州: 解放军信息工程大学, 2012

    CAO Xuefeng. Research on Earth sphere shell space grid theory and algorithms[D]. Zhengzhou: PLA Information Engineering University, 2012
    [8]
    MCILWAIN C E. Magnetic coordinates[J]. Space Science Reviews, 1966, 5(5): 585-598 doi: 10.1007/BF00167327
    [9]
    FUNG S F, TAN L C. An alternative drift shell parameter for modeling trapped particles[J]. Radiation Measurements, 1999, 30(5): 609-615 doi: 10.1016/S1350-4487(99)00243-7
    [10]
    钟佳, 邹自明. 地磁偶极子场磁力线疏密可视化算法[J]. 地球物理学进展, 2014, 29(6): 2614-2619 doi: 10.6038/pg20140622

    ZHONG Jia, ZOU Ziming. The algorithm of density visualization of magnetic flux lines based on geo-magnetic dipole field[J]. Progress in Geophysics, 2014, 29(6): 2614-2619 doi: 10.6038/pg20140622
    [11]
    THÉBAULT E, FINLAY C C, BEGGAN C D, et al. International geomagnetic reference field: the 12 th generation[J]. Earth, Planets and Space, 2015, 67(1): 79 doi: 10.1186/s40623-015-0228-9
    [12]
    FORSYTHE G E. Numerical methods for high-speed computers: a survey[C]//Papers presented at the March 3-5, 1959, Western Joint Computer Conference. San Francisco: ACM, 1959
    [13]
    TSYGANENKO N A. Modeling the Earth's magnetospheric magnetic field confined within a realistic magnetopause[J]. Journal of Geophysical Research: Space Physics, 1995, 100(A4): 5599-5612 doi: 10.1029/94JA03193
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(6)

    Article Metrics

    Article Views(179) PDF Downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return