Volume 35 Issue 4
Jul.  2015
Turn off MathJax
Article Contents
WANG Tao, LI Huichao, ZHANG Man, FU Huazheng. Comparative Study of Three AUSM Algorithms and Simulated Application on the Solar Wind[J]. Journal of Space Science, 2015, 35(4): 393-402. doi: 10.11728/cjss2015.04.393
Citation: WANG Tao, LI Huichao, ZHANG Man, FU Huazheng. Comparative Study of Three AUSM Algorithms and Simulated Application on the Solar Wind[J]. Journal of Space Science, 2015, 35(4): 393-402. doi: 10.11728/cjss2015.04.393

Comparative Study of Three AUSM Algorithms and Simulated Application on the Solar Wind

doi: 10.11728/cjss2015.04.393
  • Received Date: 2014-05-14
  • Rev Recd Date: 2014-09-16
  • Publish Date: 2015-07-15
  • Numerical simulation of MHD (Magnetohydrodynamics) is an important method to study solar-terrestrial physics phenomena. In this paper, three AUSM algorithms, i.e., AUSM, AUSM+, AUSMPW+, were compared in conjunction with the HDC method to eliminate the divergence of the magnetic field. The AUSM+ algorithm is found to be better than the AUSM algorithm and the AUSMPW+ algorithm through the results of Rotor example and Orszag-Tang vortex example. Further, the AUSM+ algorithm is used to simulate the coronal with a six-component grid system. The results show that this algorithm can correctly calculate the large-scale structure of the corona. Also, the HDC method can maintain the divergence-free constraint on the magnetic field.

     

  • loading
  • [1]
    Feng X, Zhou Y, Wu S T. A novel numerical implementation for solar wind modeling by the modified conservation element/solution element method[J]. Ap. J., 2007, 655(2):1110-1126
    [2]
    Yang L P, Feng X S, Xiang C Q, et al. Time-dependent MHD modeling of the global solar corona for year 2007: Driven by daily-updated magnetic field synoptic data[J]. J. Geophys. Res., 2012, 117(A8):1101-1024
    [3]
    Riley P, Lionello R, Linker J A et al. Global MHD modeling of the solar corona and inner heliosphere for the whole heliosphere interval[J]. Solar Phys., 2010, 274(1/2):361-377
    [4]
    Shen F, Shen C,Wang Y et al. Could the collision of CMEs in the heliosphere be super-elastic? Validation through three-dimensional simulations[J]. Geophys. Res. Lett., 2013, 40(8):1457-1461
    [5]
    Lyon J, Fedder J, Mobarry C. The Lyon-Fedder-Mobarry (LFM) global MHD magnetospheric simulation code[J]. J. Atmos. Sol-Terr. Phys., 2004, 66(15-16):1333-1350
    [6]
    Pizzo V, Millward G, Parsons A et al. Wang-Sheeley-Arge-Enlil Cone Model transitions to operations[J]. Space Weather, 2010, 9:S03004
    [7]
    Tóth G. The ▽ · B=0 constraint in shock-capturing magnetohydrodynamics codes[J]. J. Comp. Phys., 2000, 161(2):605-652
    [8]
    Brackbill J U, Barnes D C. The effect of nonzero ▽ · B on the numerical solution of the magnetohydrodynamic equations[J]. J. Comp. Phys., 1980, 35(3):426-430
    [9]
    Evans C R, Hawley J F. Simulation of magnetohydrodynamic flows -- A constrained transport method[J]. Ap. J., 1988, 332:659-677
    [10]
    Powell K G. An approximate Riemann solver for magnetohydrodynamics//Upwind and High-Resolution Schemes[M]. Berlin: Springer-Verlag, 1994:570-583
    [11]
    Dedner A, Kemm F, Kroner D, et al. Hyperbolic divergence cleaning for the MHD equations[J]. J. Comp. Phys., 2002, 175(2):645-673
    [12]
    Roe P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. J. Comp. Phys., 1997, 135(2):250-258
    [13]
    Van Leer B. Flux-vector splitting for the Euler equations[C]//Eighth International Conference on Numerical Methods in Fluid Dynamics, Lecture Notes in Physics. Berlin: Springer-Verlag, 1982:507-512
    [14]
    Steger J L, Warming R F. Flux vector splitting of the inviscid gas dynamic equation with application to finite-difference methods[J]. J. Comp. Phys,, 1981, 40(2):263-293
    [15]
    Rossow C-C. A flux-splitting scheme for compressible and incompressible flows[J]. J. Comp. Phys., 2000, 164(10):104-122
    [16]
    Liou M S, Steffen C J. A new flux splitting scheme[J]. J. Comp. Phys., 1993, 107(1):23
    [17]
    Liou M S. A Sequel to AUSM[J]. J. Comp. Phys., 1996, 129(4):364-382
    [18]
    Edwards J R. A low-diffusion flux-splitting scheme for Navier-Stokes calculations[J]. Comp. Fluids, 1997, 26(6): 653
    [19]
    Jameson A. Artificial diffusion, upwind biasing, limiters and their effect on accuracy and multigrid convergence in transonic and hypersonic flow[R], AIAA Paper, 1993-3359. Reston: AIAA, 1993
    [20]
    Agarwal R, Augustinus J. A comparative study of advection upwind split (AUSM) and wave/particle split (WPS) schemes for fluid and MHD flows[R], AIAA Paper 1999-3613. Reston: AIAA, 1999
    [21]
    Pan Y, Wang J F, Wu Y W. Upwind scheme for ideal 2-D MHD flows based on unstructured mesh[J]. Trans. Nanjing Univ. Aeron. Astron., 2007, 24(1):1-7
    [22]
    Han S H, Lee J I, Kim K H. Accurate and robust pressure weight advection upstream splitting method for magnetohydrodynamics equations[J]. AIAA J., 2009, 47(5):970-981
    [23]
    Munz C D, Schneider R, Sonnendrucker E, et al. Maxwell's equations when the charge conservation is not satisfied[J]. Comp. Ren. Acad. Sci.: Math., 1999, 328(5):431-436
    [24]
    Munz C D, Omnes P, Schneider R, E. et al. Divergence correction techniques for Maxwell solvers based on a hyperbolic model[J]. J. Comp. Phys. 2000, 161(2):484-511
    [25]
    Zhang Deliang. A Course in Computational Fluid Dynamics[M]. Beijing: Higher Education Press, 2010. In Chinese (张德良. 计算流体力学教程[M]. 北京: 高等教育出版社, 2010)
    [26]
    Balsara D S, Spicer D S. A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations[J]. J. Comp. Phys., 1999, 149(2):270-292
    [27]
    Shen Y, Zha G, Huerta M A. E-CUSP scheme for the equations of ideal magnetohydrodynamics with high order WENO scheme[J]. J. Comp. Phys., 2012, 231(19):6233-6247
    [28]
    Feng X S, Yang L P, Xiang C Q, et al. Three-dimensional solar wind modeling from the Sun to Earth by a SIP-CESE MHD model with a six-component grid[J]. Ap. J., 2010, 723:300-319
    [29]
    Parker E N. Dynamical theory of the solar wind[J]. Space Sci. Rev., 1965, 4(5/6):666-708
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1054) PDF Downloads(1334) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return