Volume 35 Issue 4
Jul.  2015
Turn off MathJax
Article Contents
SHEN Jingran, CAO Jinbin, LÜ Haoyu, FU Huishan. Numerical Simulation of Dipolarization Fronts in the Plasma Sheet of Magnetotail[J]. Journal of Space Science, 2015, 35(4): 409-414. doi: 10.11728/cjss2015.04.409
Citation: SHEN Jingran, CAO Jinbin, LÜ Haoyu, FU Huishan. Numerical Simulation of Dipolarization Fronts in the Plasma Sheet of Magnetotail[J]. Journal of Space Science, 2015, 35(4): 409-414. doi: 10.11728/cjss2015.04.409

Numerical Simulation of Dipolarization Fronts in the Plasma Sheet of Magnetotail

doi: 10.11728/cjss2015.04.409
  • Received Date: 2014-07-02
  • Rev Recd Date: 2015-04-07
  • Publish Date: 2015-07-15
  • This paper focuses on the numerical simulation of the physical and evolution features of the Dipolarization Fronts (DFs) by using the eight-wave MHD equations based on the conservation TVD scheme. Firstly, a numerical model of DFs which is produced by BBF flux is built up. It is made up of three parts, i.e., magnetotail balance model, substorm growth phase model and substorm triggering BFF model. The result of numerical simulation presents the features of the DFs caused by BBF flux. With the appearance of high speed flow, magnetic field Bz component shows the changing asymmetric bipolar structure, which means that pre-front decreases to negative while expands rapidly on the DFs. When Bz increases to its maximum, it falls and becomes stable. With the DFs moving earthward while the high speed flow heading to the same direction, Bz on the DFs changes less and less. The generations of high speed flux and the DFs make a wider differentiation in the tail. Therefore, Bz component starts sinking, which can be explained as the plasma of the earthward compression of the DFs generated by the speed differentiation.


  • loading
  • [1]
    Angelopoulos V, Gosling J T. Statistical characteristics of bursty bulk flow events[J]. J. Geophys. Res., 1994, 99(A11):21257-21280
    Hesse M, Birn J. Three-dimensional magnetotail equilibria by numerical relaxation techniques[J]. J. Geophys. Res., 1993, 98(A3):3973-3982
    Shiokawa K, Baumjohann W, Haerendel G. Braking of high-speed flows in the near-Earth tail[J]. Geophys. Res. Lett., 1997, 24(10):1179-1182
    Shiokawa K, Baumjohann W, Haerendel G, et al. High-speed ion flow, substorm current wedge, and multiple Pi2 pulsations[J]. J. Geophys. Res., 1998, 103(A3):4491-4507
    Keiling A, Angelopoulos V, Runov A, et al. Substorm current wedge driven by plasma flow vortices: THEMIS observations[J]. J. Geophys. Res., 2009, 114:A00C22
    Birn J, Raeder J, Wang Y L, et al. On the propagation of bubbles in the geomagnetic tail[J]. Ann. Geophys., 2004, 22(5):1773-1786
    Ohtani S I, Shay M A, Mukai T. Temporal structure of the fast convective flow in the plasma sheet: Comparison between observations and two- fluid simulations[J]. J. Geophys. Res., 2004, 109:A03210
    Nakamura R, Retino A, Baumjohann W, et al. Evolution of dipolarization in the near-Earth current sheet induced by earthward rapid flux transport[J]. Ann. Geophys., 2009, 27(4):1743-1754
    Slavin J A, Lepping R P, Gjerloev J, et al. Geotail observations of magnetic flux ropes in the plasma sheet[J]. J. Geophys. Res., 2003, 108(A1):1015
    Sergeev V A, Kubyshkina M, Alexeev I, et al. A 2--satellite study of nightside flux-transfer events in the plasma sheet[J]. Planet. Space Sci., 1992, 40(11):1551-1572
    Sitnov M I, Swisdak M, Divin A V. Dipolarization fronts as a signature of transient reconnection in the magnetotail[J]. J. Geophys. Res., 2009, 114:A04202
    Powell K G, Roe P, Linde T J, et al. A solution-adaptive upwind scheme for ideal magnetohydrodynamics[J]. J. Comput. Phys., 1999, 154:284-309
    Harten A. High resolution schemes for hyperbolic conservation laws[J]. J. Comput. Phys., 1983, 49:357-393
    Tsyganenko N A. Magnetospheric magnetic field model with a warped tail current sheet[J]. Planet. Space Sci., 1989, 37:5
    Ma Z W, Wang X, Bhattacharjee A. Growth, sudden enhancement, and relaxation of current sheets in the magnetotail: Two-dimensional substorm dynamics[J]. Geophys. Res. Lett., 1995, 22(21):2985-2988
    Nakamura R, Baumjohann W, Mouikis C, et al. Spatial scale of high-speed flows in the plasma sheet observed by Cluster[J]. Geophys. Res. Lett., 2004, 31:L09804
    Zhou Meng, Ashour-Abdalla M, Deng Siaohua, et al. THEMIS observation of multiple dipolarization fronts and associated wave characteristics in the near-Earth magnetotail[J]. Geophys. Res. Lett., 2009, 36:L20107
    Fu H S, Khotyaintsev Y V, Vaivads A, et al. Electric structure of dipolarization front at sub-proton scale[J]. Geophys. Res. Lett., 2012, 39:L06105
    Fu H S, Cao J B, Khotyaintsev Y V, et al. Dipolarization fronts as a consequence of transient reconnection: In-situ evidence[J]. Geophys. Res. Lett., 2013, 40:6023-6027
    Angelopoulos V, McFadden J P, Larson D, et al. Tail reconnection triggering substorm onset[J]. Science, 2008, 321:931
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1002) PDF Downloads(1063) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint