Volume 35 Issue 4
Jul.  2015
Turn off MathJax
Article Contents
Zou Xu, Yang Guotao, Wang Jihong, Gong Shaohua, Cheng Xuewu, Jiao Jing, Yue Chuan, Fu Haichuan, Wang Zishuo, Yang Song, Yang Xianchang, Fu Jun. Gravity Wave Parameters and Their Seasonal Variations Derived from Na LidarObservations at Beijing[J]. Journal of Space Science, 2015, 35(4): 453-460. doi: 10.11728/cjss2015.04.453
Citation: Zou Xu, Yang Guotao, Wang Jihong, Gong Shaohua, Cheng Xuewu, Jiao Jing, Yue Chuan, Fu Haichuan, Wang Zishuo, Yang Song, Yang Xianchang, Fu Jun. Gravity Wave Parameters and Their Seasonal Variations Derived from Na LidarObservations at Beijing[J]. Journal of Space Science, 2015, 35(4): 453-460. doi: 10.11728/cjss2015.04.453

Gravity Wave Parameters and Their Seasonal Variations Derived from Na LidarObservations at Beijing

doi: 10.11728/cjss2015.04.453
  • Received Date: 2014-05-23
  • Rev Recd Date: 2015-05-21
  • Publish Date: 2015-07-15
  • The nightly and seasonal variability of gravity wave activity and spectra in the mesopause over Beijing are studied with 3 years of sodium lidar observations. From the linear layer density response to gravity wave forcing, the lidar data were analyzed to get the atmospheric density perturbations and their spectra. The atmospheric density perturbation, density variance for fluctuations with vertical scales between 2 and 10 km, and amplitudes of density perturbation spectra at m = 2π/8, 2π/4, m = 2π/1.5, m = 2π/1, and ω = 2π/60, ω = 2π/40, 2π/25 all exhibit large nightly variability as well as large seasonal variations, with the semiannual maxima occurring near the solstice. The mean RMS atmospheric density perturbation over Beijing are 5.8%, which are obviously larger in summer than that in winter and the maxima occur near the solstice. The m spectra show power law shapes, and their range of variation is between -1.97 and -3.67 with an annual mean value of -3.02, and ω spectra is between -1.06 and -2.08 with an annual mean value of -1.92, respectively. It is concluded that the reaction of the Qinghai-Tibet Plateau and the background wind may be the main reason of the gravity wave behaviors at Beijing.

     

  • loading
  • [1]
    She C Y, Yu J R, Huang J W, et al. Na temperature lidar measurements of gravity wave perturbations of wind, density and temperature in the mesopause region[J]. Geophys. Res. Lett., 1991, 18(7):1329-1331
    [2]
    Senft D C, Gardner C S. Seasonal variability of gravity wave activity and spectra in the mesopause region at Urbana[J]. J. Geophys. Res., 1991, 96(D9):17229-17264
    [3]
    Gardner C S, Voelz D Z. Lidar studies of the nighttime sodium layer over Urbana, Illinois: 2. Gravity waves[J]. J. Geophys. Res., 1987, 92(A5):4673-4693
    [4]
    Gardner C S. Diffusive filtering theory of gravity wave spectra in the atmosphere[J]. J. Geophys. Res., 1994, 99(D10):20601-20622
    [5]
    Gardner C S. Testing theories of atmospheric gravity wave saturation and dissipation[J]. J. Atoms. Sol.-Terr. Phys., 1996, 58:1575-1589
    [6]
    Yang G, Clemesha B, Batista P, et al. Gravity wave parameters and their seasonal variations derived from Na lidar observations at 23°S[J]. J. Geophys. Res., 2006, 111, D21107
    [7]
    Zhang Tiemin, Wang Jihong, Fu Jun, et al. Study of sodium layer density over Haikou by lidar during the night of 4 May 2010[J]. Chin. J. Space Sci., 2013, 33(1):48-52. in Chinese (张铁民, 王继红, 傅军, 等. 2010年5月4日夜间海口上空钠层密度的激光雷达观测研究[J]. 空间科学学报, 2013, 33(1):48-52)
    [8]
    Yang G, Clemesha B, Batista P, et al. Improvement in the technique to extract gravity wave parameters from lidar data[J]. J. Geophys. Res., 2008, 113: D19111
    [9]
    Yang G, Clemesha B, Batista P, et al. Lidar study of the characteristics of gravity waves in the mesopause region at a southern low-latitude location[J]. J. Atoms. Sol.-Terr. Phys., 2008, 70(7):991-1011
    [10]
    Tsuda T, Inoue T, Fritts D, et al. MST radar observations of a saturated gravity wave spectrum[J]. J. Atmos. Sci., 1985, 46(15):2440-2447
    [11]
    Dewan E M. The saturated-cascade model for atmospheric gravity wave spectra and the Wavelength-Period (W-P) relations[J]. Geophys. Res. Lett., 1994, 21(9):817-820
    [12]
    Hines C O. The saturation of gravity waves in the middle atmosphere: Part II. Development of Doppler-spread theory[J]. J. Atmos. Sci., 1991, 48(11):1360-1379
    [13]
    Senft, D C, Hostetler C A, Gardner C S. Characteristics of gravity wave activity and spectra in the upper stratosphere and upper mesosphere at Arecibo during early April 1989[J]. J. Atmos. Terr. Phys., 1993, 55(3):425-439
    [14]
    Collins R L, Nomura A, Gardner C S. Gravity waves in the upper mesosphere over Antarctica: lidar observations at the South Pole and Syowa[J]. Geophys. Res. Lett., 1994, 99(D3):5475-5485
    [15]
    Beatty T J, Hostetler C A, Gardner C S. Lidar observations of gravity wave and their spectra near the mesopause and stratopause at Arecibo[J]. J. Atoms. Sci., 1992, 49(6):477-496
    [16]
    Gong S H, Yang G T, Xu J Y, et al. Statistical characteristics of atmospheric gravity wave in the mesopause region observed with a sodium lidar at Beijing, China[J]. J. Atoms. Sol.-Terr. Phys., 2013, 97:143-151
    [17]
    Long R R. Some aspects of the flow of stratified fluids: III. Continuous density gradients[J]. Tellus, 1955, 7(3):341-357
    [18]
    Sato K. Small-scale wind disturbances observed by the MU radar during the passage of typhoon Kelly[J]. J. Atoms. Sci., 1993, 50(4):518-537
    [19]
    Sato K. A statistical study of the structure, saturation and sources of inertio-gravity waves in the lower stratosphere observed with the MU radar[J]. J. Atoms. Terr. Phys., 1994, 56(6):755-774
    [20]
    Smith R B. On severe downslope winds[J]. J. Atmos. Sci., 1985, 42(23):2597-2603
    [21]
    Tsuda T, Murayama Y, Nakamura T, et al. Variations of the gravity wave characteristics with height, season, and latitude revealed by comparative observations[J]. J. Atmos. Terr. Phys., 1994, 56(5):555-568
    [22]
    Alexander M, Pfister L. Gravity wave momentum flux in the lower stratosphere over convection[J]. Geophys. Res. Lett., 1995, 22(15):2029-2032
    [23]
    Farmer D, Armi L. Stratified flow over topography: The role of small-scale entrainment and mixing in flow establishment[J]. Proc. R. Soc. London Ser.: A, 1999, 455(1989):3221-3258
    [24]
    Wan W, Yuan, H, Ning B, et al. Traveling ionospheric disturbances associated with the tropospheric vortexes around Qinghai-Tibet Plateau[J]. Geophys. Res. Lett., 1998, 25(20):3775-3778
    [25]
    Xu G, Wan W, She C, et al. The relationship between ionospheric Total Electron Content (TEC) over East Asia and the tropospheric circulation around the Qinghai-Tibet Plateau obtained with a partial correlation method[J]. Adv. Space Res., 2008, 42(1):219-223
    [26]
    Zhang, S D, Yi F. Latitudinal and seasonal variations of inertial gravity wave activity in the lower atmosphere over central China[J]. J. Geophys. Res., 2007, 112:D05109
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1029) PDF Downloads(1242) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return