Volume 37 Issue 4
Jul.  2017
Turn off MathJax
Article Contents
SHEN Dan, YANG Xu, WU Xiangbin, LIU Jing. Confidence Level of Collision Probability for Space Debris with Chebyshev Inequality[J]. Journal of Space Science, 2017, 37(4): 448-454. doi: 10.11728/cjss2017.04.448
Citation: SHEN Dan, YANG Xu, WU Xiangbin, LIU Jing. Confidence Level of Collision Probability for Space Debris with Chebyshev Inequality[J]. Journal of Space Science, 2017, 37(4): 448-454. doi: 10.11728/cjss2017.04.448

Confidence Level of Collision Probability for Space Debris with Chebyshev Inequality

doi: 10.11728/cjss2017.04.448
  • Received Date: 2016-06-16
  • Rev Recd Date: 2016-11-09
  • Publish Date: 2017-07-15
  • A growing space debris population which results to the high collision risk increasingly causes the requirement of research in a congested space environment. It's necessary to make the collision assessment for effectively avoiding collisions. The probability of collision is the main criterion for the collision assessment and warning of satellite against space debris, and is the main reference for the decision of the avoidance maneuver of the satellite. However, the collision probability is not accurate because of the parameter errors which are used to calculate the collision probability, so it is difficult to make decision. Hence, how to evaluate the reliability of the collision probability is the pressing problem. In this paper, a method for calculating the confidence level of collision probability above the threshold value of 10-4 is proposed. By using the propagation of error, the standard deviation of collision probability is calculated, and combining with the one-sided Chebyshev inequality, the confidence level is obtained. The results are also analyzed with practical cases.

     

  • loading
  • [1]
    SGOBBA T, ALLAHDADI F, RONGIER I, et al. Safety Design for Space Operations[M]. Amsterdam:Elsevier Ltd, 2013
    [2]
    ALFANO S. Review of conjunction probability me-thods for short-term encounters[C]//Proceedings of the AAS/AIAA Space Flight Mechanics Meeting. Sedona, San Diego:Univerlt Inc., 2007
    [3]
    ALFANO S. Relating position uncertainty to maximum conjunction probability[J]. J. Astron. Sci., 2005, 53(2):193-205
    [4]
    ALFRIEND K T, AKELLA M R, FRISBEE J, et al. Probability of collision error analysis[J]. Space Debris, 1999, 1(1):21-35
    [5]
    BAI Xianzong. Research on Collision Probability in Space Objects Collision Detection[D]. Changsha:National University of Defense Technology, 2008(白显宗. 空间目标碰撞预警中的碰撞概率问题研究[D]. 长沙:国防科学技术大学, 2008)
    [6]
    WANG Xiuhong, LI Junfeng, YI Weiwei. Confidence le-vel calculation method for space objects collision warning result[C]//Proceedings of Seventh National Conference on Space Debris. Kunming:State Administration of Science, Technology and Industry for National Defence, PRC, 2013:398-407(王秀红, 李俊峰, 易韦韦. 空间目标碰撞预警结果置信度计算方法[C]//第七届全国空间碎片学术交流会论文集. 昆明:国家国防科技工业局系统工程一司, 2013:398-407)
    [7]
    SHEN Hengfan. The Course of Probability and Mathematical Statistics[M]. 5th ed. Beijing:Higher Education Press, 2011(沈恒范. 概率论与数理统计教程[M]. 5版. 北京:高等教育出版社, 2011)
    [8]
    WALL J V, JENKINS C R. Practical Statistics for Astronomers[M]. Cambridge:Cambridge University Press, 2003
    [9]
    YANG Xu. Analysis and Research for Space Debris Collision Probability and its Sensitivity[D]. Beijing:Chinese Academy of Sciences, 2010(杨旭. 空间碎片碰撞概率及其敏感度分析研究[D]. 北京:中国科学院大学, 2010)
    [10]
    FOSTER J L, ESTES H S. A Parametric Analysis of Orbital Debris Collision Probability and Maneuver Rate for Space Vehicles[R]. NASA/JSC-25898. Houston:NASA Johnson Space Center, 1992
    [11]
    CHAN K. Improved analytical expressions for computing spacecraft collision probabilities[J]. Adv. Astron. Sci., 2003, 114:1197-1216
    [12]
    PATERA R P. General method for calculating sate-llite collision probability[J]. J. Guid. Control Dyn., 2001, 24(4):716-722
    [13]
    ALFANO S. A numerical implementation of spherical object collision probability[J]. J. Astron. Sci., 2005, 53(1):103-109
    [14]
    NGO H Q. Tail and Concentration Inequalities[OL]. (2011-02-19)[2016-04-18]. http://www.cse.buffalo.edu/~hungngo/classes/2011/Spring-694/lectures/l4.pdf
    [15]
    DUBHASHI D P, PANCONESI A. Concentration of Measure for the Analysis of Randomized Algorithms[M]. Cambridge:Cambridge University Press, 2009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(753) PDF Downloads(961) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return