Volume 37 Issue 5
Sep.  2017
Turn off MathJax
Article Contents
BA Jin, YAN Zhaoai, HU Xiong, GUO Shangyong, GUO Wenjie, CHENG Yongqiang. Characteristics of Vertical Wind Perturbations in the Mesopause Region Based on Lidar Measurements and Dynamic Simulations ormalsize[J]. Chinese Journal of Space Science, 2017, 37(5): 554-563. doi: 10.11728/cjss2017.05.554
Citation: BA Jin, YAN Zhaoai, HU Xiong, GUO Shangyong, GUO Wenjie, CHENG Yongqiang. Characteristics of Vertical Wind Perturbations in the Mesopause Region Based on Lidar Measurements and Dynamic Simulations ormalsize[J]. Chinese Journal of Space Science, 2017, 37(5): 554-563. doi: 10.11728/cjss2017.05.554

Characteristics of Vertical Wind Perturbations in the Mesopause Region Based on Lidar Measurements and Dynamic Simulations ormalsize

doi: 10.11728/cjss2017.05.554
  • Received Date: 2016-10-19
  • Rev Recd Date: 2017-05-10
  • Publish Date: 2017-09-15
  • A total of 82h vertical wind and zonal wind profile data obtained by the Na fluorescence Doppler lidar at Langfang observatory of National Space Science Center, are used to simulate the vertical wind perturbations by using the polarization and dispersion relation of 3D quasi-monochromatic gravity wave. The observation data show that, including the measurement error, the perturbation magnitude of vertical wind and horizontal wind is about 10m·-1, and the perturbations of vertical wind are much larger than those of the background vertical wind. The mean background vertical wind is -0.015m·-1. According to the different frequency, the gravity waves are divided into high, medium and low frequency waves. In the conditions of short period and large zonal wind perturbations, the vertical wind perturbations induced by high frequency gravity wave can reach 10m·-1, and the vertical wind perturbations induced by medium frequency gravity wave is less than 10m·-1, the vertical wind perturbations induced by low-frequency gravity waves is less than 1m·-1. The results indicate that the quasi-monochromatic gravity wave is capable of producing 10m·-1 vertical wind perturbations. In conclusion, 10m·-1 vertical wind perturbations measured by the Na fluorescence Doppler lidar at Langfang station agree with theoretical results. The study can provide theoretical basis for measuring and simulating of vertical wind, and gravity wave parameterizations.

     

  • loading
  • [1]
    LINDZEN R S. Wave-mean flow interactions in the upper atmosphere[J]. Bound.-Layer Meteor., 1973, 4 (1/2/3/4):327-343
    [2]
    FRITTS D C, WANG L, WERNE J. Gravity wave-fine structure interactions:A reservoir of small-scale and large-scale turbulence energy[J]. Geophys. Res. Lett., 2009, 36 (19):L19805
    [3]
    FRITTS D C, LUO Zhangai. Dynamical and radiative forcing of the summer mesopause circulation and thermal structure. 1:Mean solstice conditions[J]. J. Geophys. Res., 1995, 100 (D2):3119-3128
    [4]
    GARDNER C S, LIU A Z. Wave-induced transport of atmospheric constituents and its effect on the mesospheric Na layer[J]. J. Geophys. Res., 2010, 115 (D20):D20302
    [5]
    GARCIA R R, SOLOMON S. The effect of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermosphere[J]. J. Geophys. Res., 1985, 90 (D2):3850-3868
    [6]
    SMITH R W, HERNANDEZ G. Vertical winds in the thermosphere within the polar cap[J]. J. Atmos. Terr. Phys., 1995, 57 (6):611-620
    [7]
    GARDNER C S, YANG Weimin. Measurements of the dynamical cooling rate associated with the vertical transport of heat by dissipating gravity waves in the mesopause region at the Starfire Optical Range, New Mexico[J]. J. Geophys. Res., 1998, 103 (D14):16909-16926
    [8]
    ISHⅡ M, OYAMA S, NOZAWA S, et al. Dynamics of neutral wind in the polar region observed with two Fabry-Perot Interferometers[J]. Earth Planets Space, 1999, 51 (7/8):833-844
    [9]
    WILLIAMS B P, FRITTS D C, VANCE J D, et al. Sodium lidar measurements of waves and instabilities near the mesopause during the DELTA rocket campaign[J]. Earth Planets Space, 2006, 58 (9):1131-1137
    [10]
    YAN Zhaoai, HU Xiong, GUO Shengyong, et al. Long-term laser frequency stabilization for application in sodium resonance fluorescence Doppler lidar[C]//Proceedings of SPIE-International Symposium on Photoelectronic Detection and Imaging 2009:Laser Sensing and Imaging. Beijing:SPIE, 2009:738232
    [11]
    HU Xiong, YAN Zhaoai, GUO Shangyong, et al. Sodium fluorescence Doppler lidar to measure atmospheric temperature in the mesopause region[J]. Chin. Sci. Bull., 2011, 56 (4/5):417-423
    [12]
    XU Li, HU Xiong, CHENG Yongqiang, et al. Simulation of echo-photon counts of a Sodium Doppler Lidar and Retrievals of atmospheric parameters[J]. Chin. J. Geophys., 2010, 53 (7):1520-1528(徐丽, 胡雄, 程永强, 等. 钠多普勒激光雷达回波光子数仿真及大气参数反演[J]. 地球物理学报, 2010, 53 (7):1520-1528)
    [13]
    BILLS R E, GARDNER C S, FRANKE S J. Na Doppler/temperature lidar:Initial mesopause region observations and comparison with the Urbana medium frequency radar[J]. J. Geophys. Res., 1991, 96 (D12):22701-22707
    [14]
    SHE C Y, YU J R. Simultaneous three-frequency Na lidar measurements of radial wind and temperature in the mesopause region[J]. Geophys. Res. Lett., 1994, 21 (17):1771-1774
    [15]
    WANG Bo. Observational Study on the Quasi-Monochromatic Inertia Gravity Waves in Nearspace[D]. Beijing:National Space Science Center, Chinese Academy of Sciences, 2016(王博. 临近空间大气准单色惯性重力波观测研究[D]. 北京:中国科学院国家空间科学中心, 2016)
    [16]
    CHENG Yongqiang. Research and Observation of Relocatable Sodium Wind/Temperature Lidar[D]. Beijing:National Space Science Center, Chinese Academy of Sciences, 2016(程永强. 可重部署钠层测风测温激光雷达观测与研究[D]. 北京:中国科学院国家空间科学中心, 2016)
    [17]
    GARDNER C S, LIU A Z. Seasonal variations of the vertical fluxes of heat and horizontal momentum in the mesopause region at Starfire Optical Range, New Mexico[J]. J. Geophys. Res., 2007, 112 (D9):D09113
    [18]
    XU Li, HU Xiong, YAN Zhaoai, et al. Retrieval method of atmospheric parameters for a Sodium Doppler lidar[J]. Inf. Laser Eng., 2009, 38 (1):140-143, 159(徐丽, 胡雄, 闫召爱, 等. 钠多普勒激光雷达大气参数反演方法[J]. 红外与激光工程, 2009, 38 (1):140-143, 159)
    [19]
    HOLTON J R, ALEXANDER M J. The role of waves in the transport circulation of the middle atmosphere[M]//Atmospheric Science Across the Stratopause. Washington D C:American Geophysical Union, 2000:21-35. DOI: 10.1029/GM123p0021
    [20]
    XIAO C Y, HU X, ZHANG X X, et al. Interpretation of the mesospheric and lower thermospheric mean winds observed by MF radar at about 30°N with the 2D-SOCRATES model[J]. Adv. Space Res., 2007, 39 (8):1267-1277
    [21]
    FRITTS D C, ALEXANDER M J. Gravity wave dynamics and effects in the middle atmosphere[J]. Rev. Geophys., 2003, 41 (1):1003
    [22]
    SWENSON G R, ESPY P J. Observations of 2-dimensional airglow structure and Na density from the ALOHA, October 9, 1993‘Storm Flight’[J]. Geophys. Res. Lett., 1995, 22 (20):2845-2848
    [23]
    LI Zhenhua, LIU A Z, LU X, et al. Gravity wave characteristics from OH airglow imager over Maui[J]. J. Geophys. Res., 2011, 116 (D22):D22115
    [24]
    HICKEY M P, TAYLOR M J, GARDNER C S, et al. Full-wave modeling of small-scale gravity waves using Airborne Lidar and Observations of the Hawaiian Airglow (ALOHA-93) O(1S) images and coincident Na wind/temperature Lidar measurements[J]. J. Geophys. Res., 1998, 103 (D6):6439-6453
    [25]
    SWENSON G R, ALEXANDER M J, HAQUE R. Dispersion imposed limits on atmospheric gravity waves in the mesosphere:observations from OH airglow[J]. Geophys. Res. Lett., 2000, 27 (6):875-878
    [26]
    MANSON A H, MEEK C E, QIAN J, et al. Spectra of gravity wave density and wind perturbations observed during Arctic Noctilucent Cloud (ANLC-93) campaign over the Canadian Prairies:Synergistic airborne Na lidar and MF radar observations[J]. J. Geophys. Res., 1998, 103 (D6):6455-6465
    [27]
    ZHANG Shaodong, YI Fan, XIONG Donghui. A numerical study on the propagation characteristics of gravity-wave packets in real atmosphere[J]. Chin. J. Space Sci., 2002, 22 (1):36-43(张绍东, 易凡, 熊东辉. 重力波波包在真实大气中传播特性的数值研究[J]. 空间科学学报, 2002, 22 (1):36-43)
    [28]
    YUE Xianchang, YI Fan. A study of nonlinear propagation of 3D gravity-wave packets in a compressible atmosphere by using ADI scheme[J]. Chin. J. Space Sci., 2001, 21 (2):148-157(岳显昌, 易帆. 三维重力波非线性传播数值模型的一种求解格式[J]. 空间科学学报, 2001, 21 (2):148-157)
    [29]
    DING Feng. The Study of Atmospheric Gravity Wave Propagation Features Influenced by Background Winds[D]. Wuhan:Institute of Physics and Mathematics (WIPM) of Chinese Academy of Sciences, 2011(丁锋. 背景风场影响下大气重力波的传播特性研究[D]. 武汉:中国科学院研究生院(武汉物理与数学研究所), 2001)
    [30]
    LIU Xiao, XU Jiyao, LI Wenqiang, et al. Parallel numerical model for the simulation of three dimensional gravity wave's propagation[J]. Chin. J. Space Sci., 2009, 29 (6):563-572(刘晓, 徐寄遥, 李文强, 等. 模拟三维重力波传播过程的并行数值模式[J]. 空间科学学报, 2009, 29 (6):563-572)
    [31]
    BIAN Jianchun, CHEN Hongbin, LÜ Daren. Statistics of gravity waves in the lower stratosphere over Beijing based on high vertical resolution radiosonde[J]. Sci. China:Earth Sci., 2005, 48 (9):1548-1558(卞建春, 陈洪滨, 吕达仁. 用垂直高分辨率探空资料分析北京上空下平流层重力波的统计特性[J]. 中国科学D辑:地球科学, 2004, 34 (8):748-756)
    [32]
    HU Xiong, LIU A Z, GARDNER C S, et al. Characteristics of quasi-monochromatic gravity waves observed with Na Lidar in the mesopause region at Starfire Optical Range, NM[J]. Geophys. Res. Lett., 2002, 29 (24):22-1-22-4
    [33]
    ZHANG Shaodong, YI Fan, WANG Jingfang, et al. The nonlinear propagation of gravity wave packets in dissiptive atmosphere[J]. Chin. J. Space Sci., 1999, 19 (3):206-212(张绍东, 易帆, 王敬芳. 重力波波包在耗散大气中的非线性传播[J].空间科学学报, 1999, 19 (3):206-212)
    [34]
    WALTERSCHEID R L, SCHUBERT G. Nonlinear evolution of an upward propagating gravity wave:overturning, convection, transience and turbulence[J]. J. Atmos. Sci., 1990, 47 (1):101-125
    [35]
    DOU Xiankang, LI Tao, TANG Yihuan, et al. Variability of gravity wave occurrence frequency and propagation direction in the upper mesosphere observed by the OH imager in Northern Colorado[J]. J. Atmos. Solar Terr. Phys., 2010, 72 (5/6):457-462
    [36]
    LINDZEN R S. Turbulence and stress owing to gravity wave and tidal breakdown[J]. J. Geophys. Res., 1981, 86 (C10):9707-9714
    [37]
    FRITTS D C, BIZON C, WERNE J A, et al. Layering accompanying turbulence generation due to shear instability and gravity-wave breaking[J]. J. Geophys. Res., 2003, 108 (D8):8452
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1091) PDF Downloads(671) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return