Citation: | FAN Wenjie, WU Lin. Design and Mechanics Analysis of an X-type Cross-section Tubular Boomormalsize[J]. Journal of Space Science, 2017, 37(5): 616-621. doi: 10.11728/cjss2017.05.616 |
[1] |
HERZL G G, WALKER W W, FERRERA J D. NASA Space Vehicle Design Criteria (Guidance and Control):Tubular Spacecraft Booms (Extendible, Reel Stored)[R]. NASA SP-8065, NASA, 1971
|
[2] |
DING Feng. Typical mast-liked deployment mechanism with truss structure[J]. Aerospace Shanghai, 2006, 23 (1):35-40(丁锋. 典型杆状构架式展开机构[J]. 上海航天, 2006, 23 (1):35-40)
|
[3] |
CONLEY P L. Space Vehicle Mechanisms:Elements of Successful Design[M]. Chichester, West Sussex:John Wiley & Sons Inc., 1998:505-522
|
[4] |
TOKARZ M, GRYGORCZUK J, JARZYNKA S, et al. Innovative escapement-based mechanism for micro-antenna boom deployment[C]//Proceedings of the 42nd Aerospace Mechanism Symposium. Greenbelt, MD, United States:NASA Goddard Space Flight Center, 2014
|
[5] |
AUSLANDER D, CERMENSKA J, DALTON G, et al. Instrument boom mechanisms on the THEMIS satellites; magnetometer, radial wire, and axial booms[J]. Space Sci. Rev., 2008, 141 (1/2/3/4):185-211
|
[6] |
BLOCK J, STRAUBEL M, WIEDEMANN M. Ultralight deployable booms for solar sails and other large gossamer structures in space[J]. Acta Astronaut., 2011, 68 (7/8):984-992
|
[7] |
HAKKAK F, KHODDAM S.On calculation of preliminary design parameters for lenticular booms[J]. J. Aerosp. Eng., 2007, 221 (3):377-384
|
[8] |
BANIK J A, MURPHEY T W. Performance validation of the triangular rollable and collapsible mast[C]//The 24th AIAA/USU Conference on Small Satellites. Logan, Utah:AIAA, 2010
|
[9] |
MURPHEY T W, BANIK J. Triangular rollable and collapsible boom:US, US7895795B1[P]. 2011-03-01
|