Volume 38 Issue 1
Jan.  2018
Turn off MathJax
Article Contents
ZHOU Xiuhua, YU Xizheng, WANG Ronglan, ZHOU Binghong. Path optimization in the removal progress of multi-debris (in Chinese)[J]. Journal of Space Science, 2018, 38(1): 79-87. doi: 10.11728/cjss2018.01.079
Citation: ZHOU Xiuhua, YU Xizheng, WANG Ronglan, ZHOU Binghong. Path optimization in the removal progress of multi-debris (in Chinese)[J]. Journal of Space Science, 2018, 38(1): 79-87. doi: 10.11728/cjss2018.01.079

Path optimization in the removal progress of multi-debris (in Chinese)

doi: 10.11728/cjss2018.01.079
  • Received Date: 2016-11-21
  • Rev Recd Date: 2017-04-23
  • Publish Date: 2018-01-15
  • In this paper, ant colony optimization algorithm is used to study the path optimization in the removal progress of multi-debris. The modified steepest descent method is used to optimize the time of removing each piece of debris reasonably which further reduces the aggregate requirements of velocity increment. The comparisons with the order of orbit height, inclination or RAAN (Right Ascension of the Ascending Node) indicate that using the order after the optimization of the ant colony algorithm can greatly save the velocity increment. Three groups of debris produced in Chinese activities are chosen for optimization. Results show that the optimized order may be different from three kinds of order mentioned above, and the optimized order can save more velocity increment in the same task time. In addition, the task time also has an impact on the best removal order of debris.

     

  • loading
  • [1]
    KLINKRAD H. Space Debris: Models and Risk Analysis[M]. Chichester, UK: Springer, 2006:1-18
    [2]
    BONNAL C, RUAULT J M, DESJEAN M C. Active debris removal: recent progress and current trends[J]. Acta Astron., 2013, 85(4):51-60
    [3]
    CASTRONUOVO M M. Active space debris removal---A preliminary mission analysis and design[J]. Acta Astron., 2011, 69(9/10):848-859
    [4]
    WADSLEY B J, MELTON R G. Optimal visitation order for spacecraft servicing missions[J]. Adv. Astron. Sci., 2008, 129:2705-2723
    [5]
    STODGELL T R, SPENCER D B. Satellite rendezvous tours using multiobjective evolutionary optimization[J]. Adv. Astron. Sci., 2008, 129:2069-2094
    [6]
    MURAKAMI J, HOKAMOTO S. Approach for optimal multi-rendezvous trajectory design for active debris removal[C]//Proceedings of the 61st International Astronautical Congress. Prague, CZ: IAC, 2010
    [7]
    MADAKAT D, MORIO J, VANDERPOOTEN D. Biobjective planning of an active debris removal mission[J]. Acta Astron., 2013, 84:182-188
    [8]
    BRAUN V, LÜPKEN A, FLEGEL S, et al. Active debris removal of multiple priority targets[J]. Adv. Space Res., 2013, 51(9):1638-1648
    [9]
    YU Jing, CHEN Xiaoqian, CHEN Lihu. Optimal planning of LEO active debris removal based on hybrid optimal control theory[J]. Adv. Space Res., 2015, 55(11):2628-2640
    [10]
    LIU Yong, YANG Jiannan, PAN Quan. Multi-objective optimization in preliminary design of multi-debris active removal mission in LEO based on GA algorithm[J]. 2016:1-5
    [11]
    SIDI M J. Spacecraft Dynamics & Control: A Practical Engineering Approach[M]. Cambridge: The Press of the University of Cambridge, 1997:33-43
    [12]
    YUAN Jianping, HE Xingsuo. Dynamics of Spacecraft Orbital Maneuvers[M]. Beijing: China Astronautic Publishing House, 2010:1-16 (袁建平, 和兴锁. 航天器轨道机动动力学[M]. 北京: 中国宇航出版社, 2010:1-16)
    [13]
    YANG Xuefeng. Ant Colony Algorithm for TSP Problem[D]. Changchun: Jilin University, 2010 (杨学峰. 蚁群算法求解TSP问题的研究[D]. 长春: 吉林大学, 2010)
    [14]
    YANG Jianfeng. Ant Colony Algorithm and its Application Research[D]. Hangzhou: Zhejiang University, 2007 (杨剑锋. 蚁群算法及其应用研究[D]. 杭州: 浙江大学, 2007)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(732) PDF Downloads(728) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return