Volume 38 Issue 2
Mar.  2018
Turn off MathJax
Article Contents
LI Dan, WANG Shuangfeng. Experimental Study of Buoyancy Effect on Transitional Jet Diffusion Flames ormalsize[J]. Journal of Space Science, 2018, 38(2): 227-233. doi: 10.11728/cjss2018.02.227
Citation: LI Dan, WANG Shuangfeng. Experimental Study of Buoyancy Effect on Transitional Jet Diffusion Flames ormalsize[J]. Journal of Space Science, 2018, 38(2): 227-233. doi: 10.11728/cjss2018.02.227

Experimental Study of Buoyancy Effect on Transitional Jet Diffusion Flames ormalsize

doi: 10.11728/cjss2018.02.227
  • Received Date: 2017-08-22
  • Rev Recd Date: 2018-01-11
  • Publish Date: 2018-03-15
  • The transition to turbulence of coflow propane-fueled jet diffusion flames was investigated experimentally with varying air coflow velocities, and the buoyancy-suppressing effect of coflow was analyzed to reveal the buoyancy effect on the transition and stability of diffusion flames. Compared to jet flames in quiescent air, a coflow with relatively high velocity can suppress the influence of buoyancy on transitional flames, and make the critical nozzle Reynolds number of transition to turbulent flame increasing, i.e., the transition process is delayed by coflow. When the coflow velocity is small, however, the critical Reynolds number stays almost the same. In the transitional regime, diffusion flames are characterized by periodic oscillation, and the oscillation amplitude decreases with increasing coflow velocity. As coflow velocity increases further, the periodicity of flame oscillation disappears eventually, and presents a randomness. Additionally, the experiments show that a larger jet nozzle results in a greater critical Reynolds number of flame transition. Such an observation is explained in terms of the local fuel jet properties taking into account of the influence of diffusion flame.


  • loading
  • [1]
    HOTTLE H C, HAWTHORNE W R. Diffusion in laminar flame jets[J]. Proc. Combust. Inst., 1949, 3(1):254-266
    WOHL K, GAZLEY C, KAPP W. Diffusion flames[J]. Proc. Combust. Inst., 1949, 3(1):288-300
    TAKENO T, KOTANI Y. Transition and structure of turbulent jet diffusion flames[C]//Progress in Astronautics and Aeronautics. New York:AIAA, 1978, 58:19-35
    TAKAHASHI F M, IKAI S. Transition from laminar to turbulent free jet diffusion flames[J]. Combust. Flame, 1982, 48(82):85-95
    COATS C M ZHAO H. Transition and stability of turbulent jet diffusion flames[J]. Proc. Combust. Inst., 1989, 22(1):685-692
    HEDGE U N, ZHOU L, BAHADORI M Y. The transition to turbulent of microgravity gas jet diffusion flames[J]. Combust. Sci. Technol., 1994, 102(1/2/3/4/5/6):95-113
    ROPER F G. The prediction of laminar jet diffusion flame sizes:Part I theoretical model[J]. Combust. Flame, 1977, 29(3):219-226
    Heskestad G. Luninous heights of turbulent diffusion flames[J]. Fire Safety J., 1983, 5(2):103-108
    KIMURA I. Stability of laminar jet-flames[J]. Proc. Combust. Inst., 1965, 10(1):1295-1300
    ZUKOSKI E E. CETEGEN B M, KUBOTA T. Visible structure of buoyant diffusion flames[J]. Proc. Combust. Inst., 1985, 20(1):361-366
    BAHADORI M Y, STOCKER D P, DAVID F, et al. Effects of buoyancy on laminar, transitional, and turbulent gas jet diffusion flames[M]//Modern Developments in Energy, Combustion and Spectroscopy. Cleveland, OH:NASA, 1993:49-66
    LINGENS A, REEKER M, SCHREIBER M. Instability of buoyant diffusion flames[J]. Exper. Fluids, 1996, 20(4):241-248
    KONG Wenjun, DU Wenfeng, ZHANG Xiaoqian. Effects of gravity on the dynamic behavior of jet diffusion flames[J]. J. Eng. Thermophys., 2000, 21(3):373-377(孔文俊, 杜文峰, 张孝谦. 重力对扩散射流火焰动态特性的影响[J]. 工程热物理学报, 2000, 21(3):373-377)
    AGRAWAL A K, ALBERS B W, ALAMMAR K N. Effects of buoyancy on transitional hydrogen gas-jet diffusion flames[J]. Combust. Sci. Technol., 2005, 177(2):305-322
    KOLHE P S, AGRAWAL A K. Role of buoyancy on instabilities and structure of transitional gas jet diffusion flames[J]. Flow Turb. Combust., 2007, 79(4):343-360
    FUJISAWA N, MATSUMOTO Y, YAMAGATA T. Influence of co-flow on flickering diffusion flame[J]. Flow Turb. Combust., 2016, 97(3):931-950
    LEE B, CHUNG S. Stabilization of lifted tribrachial flames in a laminar nonpremixed jet[J]. Combust. Flame, 1997, 109(2):163-172
    LAW C K. Combustion Physics[M]. Cambridge:Cambridge University Press, 2006
    KANG Y H, WANG Q H, LU X F, et al. Experimental and theoretical study on the flow, mixing, and combustion characteristics of dimethyl ether, methane, and LPG jet diffusion flames[J]. Fuel Proc. Technol., 2015, 129:98-112
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(916) PDF Downloads(673) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint