Volume 38 Issue 3
May  2018
Turn off MathJax
Article Contents
LEI Yuchuan, CHEN Zhenqian. Analysis of Condensation Heat Transfer in Curved Triangle Microchannel under Microgravity[J]. Chinese Journal of Space Science, 2018, 38(3): 368-372. doi: 10.11728/cjss2018.03.368
Citation: LEI Yuchuan, CHEN Zhenqian. Analysis of Condensation Heat Transfer in Curved Triangle Microchannel under Microgravity[J]. Chinese Journal of Space Science, 2018, 38(3): 368-372. doi: 10.11728/cjss2018.03.368

Analysis of Condensation Heat Transfer in Curved Triangle Microchannel under Microgravity

doi: 10.11728/cjss2018.03.368
  • Received Date: 2017-08-22
  • Rev Recd Date: 2018-01-24
  • Publish Date: 2018-05-15
  • Numerical simulations of condensation heat transfer in triangle microchannels are presented. The model is established on the Volume of Fluid (VOF) approach and the user-defined routines which includes heat transfer at the vapor-liquid interface and latent heat. The predictive accuracy of the numerical model is assessed by comparing the heat transfer coefficient with the available empirical correlations in the literature. The influence of gravity and surface tension on the liquid-vapor interface distribution and heat transfer performance are analyzed. No obvious effect of the gravity is observed in the liquid-vapor interface distribution and the average cross sectional heat transfer coefficient. Surface tension, which plays a dominate role during the condensation in non-circular microchannels, leading to reduction of the condensate film thickness at the sides of the channel and accumulation of the condensate at the corners of the channel, giving rise to smaller thermal resistance and better heat transfer performance.

     

  • loading
  • [1]
    TUCKERMAN D B, PEASE R F. High performance heat sinking for VLSI[J]. Elec. Device Lett., 1981, 2(5):126-129
    [2]
    CAVALLINI A, DORETTI L, MATKOVIC M, et al. Update on condensation heat transfer and pressure drop in minichannels[J]. Heat Trans. Eng., 2006, 27:74-87
    [3]
    GARIMELLA S, KILLION J D, COLEMANN J W. An experimentally validated model for two-phase pressure drop in the intermittent flow regime for circular micrchannels[J]. ASME J. Fluids Eng., 2002, 124:205-214
    [4]
    LI Panpan, CHEN Zhenqian. Effect of gravity during condensation of R134a in a rectangular microchannel[J]. Chin. J. Space Sci., 2006, 36(4):525(李盼盼, 陈振乾. 重力对R134a在矩形小通道内冷凝的影[J]. 空间科学学报, 2006, 36(4):525)
    [5]
    CHEN Yongping, WU Jiafeng, SHI Mingheng, et al. Three dimensional simulation for steady annular condensation in rectangular microchannels[J]. J. Chem. Ind. Eng., 2008, 59(8):1923-1929
    [6]
    AGARWAL A, BANDHAUER T M, GARIMELLA S. Measuring and modeling of condensation heat transfer in noncircular microchannels[J]. Int. J. Refrig., 2010, 33:1169-1179
    [7]
    DA RIVA E, DEL COL D, CAVALLINI A. Modeling of condensation in a circular minichannel by means of the VOF method[C]//Proceedings of the 14th International Heat Transfer Conference. Washington, DC, USA, 2010
    [8]
    NEBULONI S, THOME J R. Numerical modeling of laminar annular film condensation for different channel shapes[J]. Int. J. Heat Mass Trans., 2010, 53:2615-2627
    [9]
    OHADI M, CHOO K, DESSIATOUN S, CETEGEN E. Next Generation Microchannel Heat Exchangers[M]. New York:Springer, 2013:33-65
    [10]
    ZHAO T S, LIAO Q. Theoretical analysis of film condensation heat transfer inside vertical mini triangular channels[J]. Int. J. Heat Mass Trans., 2002, 45(13):2829-2842
    [11]
    MGHARI H EL, ASBIK M, LOUAHLIA H. Condensation heat transfer enhancement in a horizontal non-circular microchannel[J]. Appl. Therm. Eng., 2014, 64:358-370
    [12]
    WU J F, CHEN Y P, SHI M H, et al. Three-dimensional numerical simulation for annular condensation in rectangular microchannels[J]. Nanosc. Microsc. Thermophys. Eng., 2009, 13:13-29
    [13]
    WU Jiafeng, CHEN Yongping, SHI Mingheng, et al. Simulation for annular condensation flow in rectangular microchannels[J]. J. Eng. Thermophys., 2008, 29(11):1924-1926
    [14]
    WANG H S, ROSE J W. A theory of film condensation in horizontal noncircular section microchannels[J]. ASME J. Heat Trans., 2005, 127:1096-1105
    [15]
    LEMMON E W, HUBER M L, MCLINDEN M O. NIST Standard Reference Database 23:Reference Fluid Thermodynamic and Transport Properties, Version 9.0[R]. Gaithersburg:National Institute of Standards and Technology, 2010
    [16]
    HIRT C W, NICHOLS B D. Volume of Fluid (VOF) method for the dynamics of free boundaries[J]. J. Comput. Phys., 1981, 39:201-225
    [17]
    BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. J. Comput. Phys., 1992, 100:335-354
    [18]
    WILCOX D C. Turbulence Modeling for CFD (2nd ed)[M]. California:DCW Industries, Inc., 1998
    [19]
    LEE W H. A pressure iteration scheme for two-phase flow modeling[M]//Multiphase Transport Fundamentals, Reactor Safety, Applications. Washington:Hemisphere Publishing, 1980
    [20]
    WANG H S, ROSE J W. Film condensation in horizontal microchannels:effect of channel shape[J]. Int. J. Therm. Sci., 2006, 45:1205-1212
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1097) PDF Downloads(3080) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return