Volume 38 Issue 3
May  2018
Turn off MathJax
Article Contents
FENG Jinkai, WANG Qingbin, HUANG Jiaxi, ZHANG Chao, FAN Diao. Construction of Regional Point Mass Model in Polar Regions[J]. Journal of Space Science, 2018, 38(3): 418-426. doi: 10.11728/cjss2018.03.418
Citation: FENG Jinkai, WANG Qingbin, HUANG Jiaxi, ZHANG Chao, FAN Diao. Construction of Regional Point Mass Model in Polar Regions[J]. Journal of Space Science, 2018, 38(3): 418-426. doi: 10.11728/cjss2018.03.418

Construction of Regional Point Mass Model in Polar Regions

doi: 10.11728/cjss2018.03.418
  • Received Date: 2017-05-03
  • Rev Recd Date: 2018-03-09
  • Publish Date: 2018-05-15
  • In the traditional polar coordinate system, the latitude and longitude grids will undergo serious deformation in the polar regions. This deformation will cause the design matrix of point-mass model equation unsolvable, and the spherical harmonic method is singular near the two polar points. In this paper, the singularity problem in the calculation of disturbing gravity and the instability problem during the construction of point mass model in polar regions is studied. The singularity elimination algorithm is introduced in spherical harmonic method and the construction of point mass model based on pole transform is proposed. Numerical experiment results show that the singularity elimination algorithm can effectively solve the singularity problem near the poles, and the structure of point mass model based on the pole transform method is stable and the model can achieve the same accuracy compared with the traditional one, which provides a new way for disturbing gravity fast calculation of polar region aircraft.

     

  • loading
  • [1]
    MORITZ H. Advanced Physical Geodesy[M]. Karlsruhe:Herbert Wichmann Verlag, 1980
    [2]
    WU Xiaoping. Point-mass model of local gravity field[J]. Acta Geod.Cartogr. Sin., 1984, 13(4):249-258(吴晓平. 局部重力场的点质量模型[J]. 测绘学报, 1984, 13(4):249-258)
    [3]
    HUANG Motao. Configuration optimization of the disturbing point masses model and its sequential solution[J]. Acta Geod. Cartogr. Sin., 1994, 23(2):81-89(黄谟涛. 扰动质点赋值模式结构优化及序贯解法[J]. 测绘学报, 1994, 23(2):81-89)
    [4]
    LEHMANN R. The method of free-positioned point masses-Geoid studies on the gulf of Bothnia[J]. Bull. Geod., 1993, 67(1):31-40
    [5]
    LIU Xiaogang, ZHAO Dongming, WU Xing, et al. Comparison of point-mass model with monolayer density model for trajectory disturbing gravity calculation[J]. J. Inf. Eng. Univ., 2010, 11(2):160-165(刘晓刚, 赵东明, 吴星, 等. 点质量模型和单层密度模型计算弹道扰动引力的比较[J]. 信息工程大学学报, 2010, 11(2):160-165)
    [6]
    ANTUNES C, PAIL R, CATALAO J. Point mass method applied to the regional gravimetric determination of the geoid[J]. Stud. Goephys. Geod., 2003, 47(3):495-509
    [7]
    WU Xing, ZHANG Chuanding, ZHAO Dongming. Generalized torus harmonic analysis of satellite gravity gradients component[J]. Acta Geod. Cartogr. Sin., 2009, 38(2):101-107(吴星, 张传定, 赵东明. 卫星重力梯度分量的广义轮胎调和分析[J]. 测绘学报, 2009, 38(2):101-107)
    [8]
    ZHENG Wei, XIE Yu, TANG Guojian. Pole transformation of spherical harmonic method in gravity anomaly calculation for unpowered phase trajectory[J]. J. Astron., 2011, 32(10):2103-2108(郑伟, 谢愈, 汤国建. 自由段弹道扰动引力计算的球谐函数极点变换[J]. 宇航学报, 2011, 32(10):2103-2108)
    [9]
    WANG Jianqiang, LI Jiancheng, WANG Zhengtao, et al. Pole transform of spherical harmonic function to quickly calculate gravity the disturbance on earth-orbiting satellites[J]. Geomat. Inf. Sci. Wuhan Univ., 2013, 38(9):1039-1043(王建强, 李建成, 王正涛, 等. 球谐函数变换快速计算扰动引力[J]. 武汉大学学报信息科学版, 2013, 38(9):1039-1043)
    [10]
    HUANG Motao, GUAN Zheng. Test and construction of disturbing point masses model[J]. J. Wuhan Tech. Univ. Surv. Mapp., 1994, 19(4):304-309(黄谟涛, 管铮. 扰动质点模型构制与检验[J]. 武汉测绘科技大学学报, 1994, 19(4):304-309)
    [11]
    HUANG Motao, GUAN Zheng, OUYANG Yongzhong. Accuracy analysis and calculation of 1°×1° point masses in the area of China[J]. J. Wuhan Tech. Univ. Surv. Mapp., 1995, 20(3):257-262(黄谟涛, 管铮, 欧阳永忠. 中国地区1°×1° 点质量解算与精度分析[J]. 武汉测绘科技大学学报, 1995, 20(3):257-262)
    [12]
    WANG Jianqiang, LI Jiancheng, ZHAO Guoqiang, et al. The construction and analysis for three-tier point mass model of gravity[J]. Acta Geod. Cartogr. Sin., 2010, 39(5):503-507, 515(王建强, 李建成, 赵国强, 等. 重力三层点质量模型的构造与分析[J]. 测绘学报, 2010, 39(5):503-507, 515)
    [13]
    WU Xiaoping. Structure of data distribution in the determination of the disturbing gravity field outside the earth[J]. Eng. Surv. Mapp., 2001, 10(3):1-8(吴晓平. 地球外部扰动引力场确定的数据空间分布结构[J]. 测绘工程, 2001, 10(3):1-8)
    [14]
    (黄俊华, 王明海, 王少峰. 基于点质量模型的扰动引力快速计算[J]. 弹箭与制导学报, 2010, 30(3):128-130

    HUANG Junhua, WANG Minghai, WANG Shaofeng. Fast computation of disturbing gravity trajectory based on point-mass model[J]. J. Proj. Roc. Miss. Guid., 2010, 30(3):128-130
    [15]
    JIANG Dong, WANG Qingbin, ZHAO Dongming. Analysis on efficiency of disturbing gravitational fast computing methods[J]. J. Geomat. Sci. Techn., 2011, 28(6):411-415(江东, 王庆宾, 赵东明. 空中扰动引力快速赋值算法的效能分析[J]. 测绘科学技术学报, 2011, 28(6):411-415)
    [16]
    GAO Xinbin, SUN Wen, ZHANG Hongwei, et al. Application of point mass model in downward continuation of airborne gravity data[J]. J. Geomat. Sci. Techn., 2013, 30(3):232-235, 240(高新兵,孙文,张宏伟, 等. 点质量模型在航空重力数据向下延拓中的应用[J]. 测绘科学技术学报, 2013, 30(3):232-235, 240)
    [17]
    HUANG Jiaxi, WANG Qingbin, ZHANG Chao, et al. Research on fast construction method of large scale point mass model[J]. J. Geod. Geodyn., 2017, 37(1):11-15(黄佳喜, 王庆宾, 张超, 等. 大范围点质量模型快速构建方法研究[J]. 大地测量与地球动力学, 2017, 37(1):11-15)
    [18]
    XU Shangbo, GUAN Zhengxi. An improved method based on the spherical harmonic model for solution of the disturbing gravitation problem[J]. J. Proj. Rock. Miss. Guid., 2006, 26(3):207-210(胥尚博, 关正西. 扰动引力求解的改进球谐函数法[J]. 弹箭与制导学报, 2006, 26(3):207-210)
    [19]
    LIU Xiaogang, WU Xiaoping, ZHAO Dongming, et al. Non-singular expression of the disturbing gravity gradients[J]. Acta Geod. Cartogr. Sin., 2010, 39(5):450-457(刘晓刚, 吴晓平, 赵东明, 等. 扰动重力梯度的非奇异表示[J]. 测绘学报, 2010, 39(5):450-457)
    [20]
    LIU Xiaogang, WU Juan, JI Jianfeng. Construction of non-singular computational model of trajectory disturbing gravity[J]. Prog. Geophys., 2013, 28(2):579-584(刘晓刚, 吴娟, 姬剑锋. 弹道扰动引力无奇异性计算模型的建立[J]. 地球物理学进展, 2013, 28(2):579-584)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(611) PDF Downloads(2859) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return