Volume 38 Issue 4
Jul.  2018
Turn off MathJax
Article Contents
JIAO Cuiling, WANG Reng, LU Ye, LI Xiangyang. Infrared Materials Growth under Microgravity in Spaceormalsize[J]. Journal of Space Science, 2018, 38(4): 530-538. doi: 10.11728/cjss2018.04.530
Citation: JIAO Cuiling, WANG Reng, LU Ye, LI Xiangyang. Infrared Materials Growth under Microgravity in Spaceormalsize[J]. Journal of Space Science, 2018, 38(4): 530-538. doi: 10.11728/cjss2018.04.530

Infrared Materials Growth under Microgravity in Spaceormalsize

doi: 10.11728/cjss2018.04.530
  • Received Date: 2017-08-29
  • Rev Recd Date: 2018-05-28
  • Publish Date: 2018-07-15
  • Recent developments of infrared materials growth in space have been reviewed. The growth methods mentioned here includes melt, vapor growth, liquid phase epitaxy and molecular beam epitaxy. The fundamental principles have been presented for materials grown by different methods. A comparison of ground and space growth has been made giving the challenges and advantages respectively. The ZnTe:Cu crystal was grown using the melt method under microgravity conditions on board of TG-Ⅱ spacecraft, and a reference crystal was grown on Earth under gravity conditions. The related experimental results between the space and terrestrial conditions have been compared. Both the current methods of melt and vapor and perspective development by molecular beam epitaxy have been presented for high-performance, large-scale infrared material growth in space. Lastly the future direction is demonstrated for the space-borne growth of infrared material.


  • loading
  • [1]
    WALTER H U. Fluid Sciences and Materials Science in Space[M]. Beijing:Science and Technology of China Press, 1991:251(瓦尔特H U. 空间流体科学与空间材料科学[M]. 北京:中国科学技术出版社, 1991:251)
    CRÖLL A, KAISER T, SCHWEIZER M, et al. Floating-zone and floating-solution-zone growth of GaSb under microgravity[J]. J. Cryst. Growth, 1998, 191(3):365-376
    YEE J F, LIN M C, SARMA K, et al. The influence of gravity on crystal defect formation in InSb-GaSb alloys[J]. J. Cryst. Growth, 1975, 30(2):185-192
    WALTER H U. Generation and propagation of defects in indium antimonide[J]. J. Electrochem. Soc., 1977, 124(2):250-258
    KHASHIMOV F R. Structural and physical characteristics of InSb single crystals grown under Near-Zero gravity conditions[C]//Proceeding of 3rd European Symposium on Materials Science in Space. Grenoble:European Space Agency, 1979:9-15
    GILLIES D C, LEHOCZKY S L, SZOFRAN F R, et al. Bulk growth of Ⅱ-V!I crystals in the microgravity environment of USML-1[C]//Proceedings of SPIE Volume 2021, Growth and Characterization of Materials for Infrared Detectors. San Diego, CA, United States:SPIE, 1992:10-21
    CRÖLL A, TEGETMEIER A, NAGEL G, et al. Floating-zone growth of GaAs under microgravity during the D2-mission[J]. Cryst. Growth Tech., 1994, 29(3):335-342
    HERRMANN F M, MÜLLER G. Growth of 20mm diameter GaAs crystals by the floating-zone technique with controlled As-vapour pressure under microgravity[J]. J. Cryst. Growth, 1995, 156(4):350-360
    SYLLA L, FAULER A, FIEDERLE M, et al. Dewetting during the crystal growth of (Cd, Zn)Te:in under microgravity[J]. IEEE Trans. Nucl. Sci., 2009, 56(4):1747-1751
    BALINT S, EPURE S. Non-lyapunov type stability in a model of the Dewetted Bridgman crystal growth under zero gravity conditions[J]. Microgr. Sci. Tech., 2011, 23(S1):49-58
    YECKEL A, DERBY J J. Existence, stability, and nonlinear dynamics of detached Bridgman growth states under zero gravity[J]. J. Cryst. Growth, 2011, 314(1):310-323
    LARSON D J JR, DUDLEY M, CHUNG H, et al. Characterization of Zn-alloyed CdTe compound semiconductors processed in microgravity on USML-1 and USML-2[J]. Adv. Space Res., 1998, 22(8):1179-l188
    MAMIYA M, NGAI H, CASTILLO M, et al. The analysis of CdTe solidification in absence of thermal convection via short-duration microgravity[J]. J. Cryst. Growth, 2006, 295(2):209-216
    MOTAKEF S, BECLA P, SWIDER S, et al. Growth of CdZnTe by the detached Bridgman method[C]//Proceedings of SPIE Volume 8507, Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XIV. San Diego, California:SPIE, 2012
    BORISENKO E B, KOLESNIKOV N N, SENCHENKOV AS, et al. Crystal growth of Cd1-xZn_xTe by the traveling heater method in microgravity onboard of Foton-M4 spacecraft[J]. J. Cryst. Growth, 2017, 457:262-264
    WANG Reng, LI Xiangyang, LU Ye, et al. Research advances in vapor phase growth of CdZnTe under microgravity[J]. Infrared, 2013, 34(11):8-12(王仍, 李向阳, 陆液, 等. 空间微重力汽相生长CdZnTe的研究进展[J]. 红外, 2013, 34(11):8-12)
    LU Ye, WANG Reng, DU Yunchen, et al. Growth of ZnTe crystal in microgravity on Tiangong-2 spaceshipormalsize[J]. Chin. J. Space Sci., 2018, 38(2):234-238(陆液, 王仍, 杜云辰, 等.天宫二号碲化锌晶体生长[J]空间科学学报, 2018, 38(2):234-238)
    SYLLA L, DUFFAR T. Numerical simulation of temperature and pressure fields in CdTe growth experiment in the Material Science Laboratory (MSL) onboard the International Space Station in relation to dewetting[J]. J. Cryst. Growth, 2007, 303(1):187-192
    LYUBIMOVA T P, LYUBIMOV D V, IVANTSOV A O. The influence of vibrations on melt flows during detached Bridgman crystal growth[J]. J. Cryst. Growth, 2014, 385:77-81
    STELIAN C, DUFFAR F. Numerical modeling of CdTe crystallization fromTe solution under terrestrial and microgravity conditions[J]. J. Cryst. Growth, 2014, 400:67-75
    STELIAN C, DUFFAR T. In fluence of rotating magnetic fields on THM growth of CdZnTe crystals under microgravity and ground conditions[J]. J. Cryst. Growth, 2015, 429:19-26
    WU Shunfa. Meniscus Shape Calculation and Stability Analysis of CdZnTe Cryatals Detachment Growth[D]. Chongqing:Chongqing University, 2008(伍顺发. CdZnTe晶体分离结晶界面形状计算及稳定性分析[D]. 重庆:重庆大学, 2008)
    LAN P, ZHANG Q Z. Global simulation of CdZnTe Crystal growth by detached solidification method[J]. Microg. Sci. Tech., 2010, 22(2):179-183
    WIEDEMEIER H, KLAESSIG F C, IRENE E A, et al. Crystal growth and transport rates of GeSe and GeTe in micro-gravity environment[J]. J. Cryst. Growth, 1973, 31:36-43
    WIEDEMEIER H, GE Y R, HUTCHINS M A, et al. Growth of Hg1-xCdxTe epitaxial layers on (100) CdTe by chemical vapor transport under normal and reduced gravity conditions[J]. J. Cryst. Growth, 1995, 146(1-4):610-618
    PALOSZ W, GRASZA K, DUROSE K, et al. The effect of the wall contact and post-growth cool-down on defects in CdTe crystals grown by ‘contactless’ physical vapour transport[J]. J. Cryst. Growth, 2003, 254(3-4):316-328
    JIANG Jinshang. Space Science and Application[M]. Beijing:Science Press. 2001(姜景山. 空间科学与应用[M]. 北京:科学出版社, 2001)
    FIEDERLE M, BENZ K W, CRÖLL A, et al. Deposition of CdTe films under microgravity:Foton M3 mission[J]. Cryst. Res. Technol., 2009, 44(10):1059-1066
    WANG Reng, JIAO Cuiling, XU Guoqing, et al. Growth of Au-doped Hg1-xCdxTe epitaxial crystals and its Raman spectrum[J]. J. Infrared Millim., 2015, 34(4):432-436(王仍, 焦翠灵, 徐国庆, 等. Au掺杂碲镉汞气相外延生长及电学性能[J]. 红外与毫米波学报, 2015, 34(4):432-436)
    ZHAO Jianhua, WANG Wenkui. Research progress in the crystal from vapor phase in space[J]. Prog. Phys., 1998, 18(3):283-307(赵建华, 王文魁.微重力条件下材料气相生长研究进展[J]. 物理学进展, 1998, 18(3):283-307)
    KODAMA S, NAKAJIMA S, SUZUKI K, et al. Compositional variation in AlGaAs crystals grown by LPE under microgravity and terrestrial conditions[J]. J. Cryst. Growth, 1998, 194(2):166-172
    IGNATIEV A, FREUNDLICH A, PCHELYAKOV O, et al. Molecular beam epitaxy in the ultra-vacuum of space:present and near future[M]//HENINI M. Molecular Beam Epitaxy:From Research to Mass. Amsterdam:Elsevier, 2013:47-53
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(555) PDF Downloads(318) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint