Volume 39 Issue 1
Jan.  2019
Turn off MathJax
Article Contents
ZHANG Zhuo, WANG Yongmei, WANG Weihe, WANG Houmao. Sensitivity Study of Viewing Path and Spectral Resolution on Absorbing Aerosol Index[J]. Journal of Space Science, 2019, 39(1): 93-99. doi: 10.11728/cjss2019.01.093
Citation: ZHANG Zhuo, WANG Yongmei, WANG Weihe, WANG Houmao. Sensitivity Study of Viewing Path and Spectral Resolution on Absorbing Aerosol Index[J]. Journal of Space Science, 2019, 39(1): 93-99. doi: 10.11728/cjss2019.01.093

Sensitivity Study of Viewing Path and Spectral Resolution on Absorbing Aerosol Index

doi: 10.11728/cjss2019.01.093
  • Received Date: 2017-12-06
  • Rev Recd Date: 2018-05-08
  • Publish Date: 2019-01-15
  • Absorbing Aerosol Index (AAI) has a broad application in pollution monitoring. AAI is influenced by many factors in atmosphere, such as altitude of boundary layer, height of cloud, relative humidity, as well as factors from instrumental properties and geometric observation view angles. The atmospheric radiance transfer model MODTRAN was used to simulate the effects of the streams used in the DISORT multiple scattering calculation in radiance transfer equation and view angle of instrument on the biases of AAI derivation. The results indicate that 8 Streams is the best choice in radiative transfer simulation of aerosol scattering, both in accuracy and computational efficiency. AAI varies similarly with the view angle for different aerosol thickness and types:When Relative Azimuth Angle <120°, the bias of AAI is largest when both the Solar Zenith Angle and Satellite Viewing Angle are between 40° and 60°; When Relative Azimuth Angle <180° and >120°, the bias of AAI is relatively small. Besides, spectral resolution has no significant influence on AAI retrieval results.

     

  • loading
  • [1]
    DAVE J V. Effect of aerosols on the estimation of total ozone in an atmospheric column from the measurements of its ultraviolet radiance[J]. Atmos. Sci., 1987, 35:899-911
    [2]
    HERMAN J R., KROTKOV N, CELARIER E, et al. Distribution of UV radiation at the Earth's surface from TOMS-measured UV-backscattered radiances[J]. Geophys. Res., 1999, 104(D10):12059-12076
    [3]
    KROTKOV N A, BHAETIA P K, HERMAN J R, et al. Satellite estimation of spectral surface UV irradiance in the presence of tropospheric aerosols:1. Cloud-free case[J]. Geophys. Res., 1998, 103(D8):8779-8793
    [4]
    HERMAN J R, BHARTIA P K, TORRES O, et al. Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data[J]. Geophys. Res., 1997, 102(D14):16911-16922
    [5]
    TORRES O, BHARTIA P K, HERMAN J R, et al. Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation:theoretical basis[J]. J. Geophys. Res. Atmos., 1998, 103(D14):17099-17110
    [6]
    TORRES O, HERMAN J R, BHARTIA P K, et al. Aerosol properties from EP-TOMS near UV observations[J]. Adv. Space Res., 2002, 29(11):1771-1780
    [7]
    CAKMUR R V, MILLER R L, TEGEN I. A comparison of seasonal and interannual variability of soil dust aerosols over the Atlantic Ocean as inferred by the TOMS AI and AVHRR AOT retrievals[J]. Geophys. Res. 2001, 106(D16):18287-18303
    [8]
    PROSPERO J M, GINOUX P, TORRES O, et al. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS), absorbing aerosol product[J] Rev. Geophys., 2002, 40(1):2-1-31
    [9]
    PROSPERO J M. Interhemispheric transport of viable fungi and bacteria from Africa to the caribbean with soil dust[M]//Werner D. Biological Resources and Migration, Chapter 11. Berlin, Heidelberg:SpringerVerlag, 2004:127-133
    [10]
    SHINN E A, Smith G W, PROSPERO J M, et al. African dust and the demise of Caribbean Coral Reefs[J]. Geophys. Res. Lett., 2000, 27(19):3029-3032
    [11]
    MCPETERS R D, KRUEGER A J, BHARTIA P K, et al. Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) data products user's guide[M]. NASA Ref. Publ. 1993:1384
    [12]
    DE GRAAF M, STAMMES P, TORRES O, et al. Absorbing aerosol index:sensitivity analysis, application to gome and comparison with toms[J]. J. Geophys. Res. Atmos., 2005, 110(D1):372-384
    [13]
    WANG Y, WANG Y J, WANG W H, et al. Fy-3 satellite ultraviolet total ozone unit[J]. Chinese Sci. Bull., 2010, 55(1):84-89
    [14]
    KNEIZYS F X, ROBERTSON D C, ABREU L W, et al. The MODTRAN 2/3 Report and LOWTRAN 7 MODEL[M]. MODTRAN Report, Hanscom AFB, MA:Phillips Laboratory, Geophysics Directorate, PL/GPOS, 1996:1731-3010
    [15]
    SUN Y Y, DONG H, BI Z H, et al. Inter-comparison of models for radiative transfer in the atmosphere[J]. High Power, Laser and Particle Beams, 2004, 16(2):149-153
    [16]
    SHI G Y. Atmospheric Radiation[M] Beijing:Science Press, 2007:71-73
    [17]
    FAN B, LI X, ZHANG J, et al. The aerosol models in modtran:incorporating selected measurements from northern Australia[J]. Chin. J. Appl. Ecol. , 2005, 71 (711):1587-1594
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(497) PDF Downloads(370) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return