Volume 39 Issue 6
Nov.  2019
Turn off MathJax
Article Contents
GUO Wenhua, PENG Hao, ZHAO Jianfu. Melting Heat Transfer Characteristics of Liquid Metal as Phase Change Material under Microgravity[J]. Journal of Space Science, 2019, 39(6): 778-786. doi: 10.11728/cjss2019.06.778
Citation: GUO Wenhua, PENG Hao, ZHAO Jianfu. Melting Heat Transfer Characteristics of Liquid Metal as Phase Change Material under Microgravity[J]. Journal of Space Science, 2019, 39(6): 778-786. doi: 10.11728/cjss2019.06.778

Melting Heat Transfer Characteristics of Liquid Metal as Phase Change Material under Microgravity

doi: 10.11728/cjss2019.06.778
  • Received Date: 2018-11-12
  • Rev Recd Date: 2019-09-30
  • Publish Date: 2019-11-15
  • Thermal energy storage is suitable for temperature control of working units in spacecraft under periodic heat flow, but it faces the problem of low melting rate of phase change materials under microgravity environment. In view of high thermal conductivity and high latent heat per unit volume of liquid metal, it is expected that the melting rate under microgravity will be increased by using liquid metal as phase change material. In the present study, the evolution of solid-liquid interface, streamline profile and temperature distribution during melting of gallium under microgravity are numerically investigated, and the influences of cavity size and superheat degree on melting process are analyzed. The results show that heat conduction plays a dominant role in the melting process of gallium under microgravity. The melting time of gallium is 88.3% and 96.4% shorter than that of ice and n-octadecane respectively, and the energy storage is 1.2 and 2.2 times of that of ice and n-octadecane respectively. The melting time decreases with the increase of superheat degree, and increases with the increase of cavity size. Meanwhile, the equation for describing the relationship between liquid fraction and dimensionless time is deduced.

     

  • loading
  • [1]
    WANG Lei, JIAN Lujing. Application of phase change materials in spacecraft[J]. Spacec. Environ. Eng., 2013, 30(5):522-528(王磊, 菅鲁京. 相变材料在航天器上的应用[J]. 航天器环境工程, 2013, 30(5):522-528)
    [2]
    ZHU Fanglong. Numerical simulation of heat transfer for thermal protective clothing incorporating phase change material layer[J]. J. Basic Sci. Eng., 2011, 19(4):635-643(朱方龙. 附加相变材料层的热防护服装传热数值模拟[J]. 应用基础与工程科学学报, 2011, 19(4):635-643)
    [3]
    RUAN Shiting, ZHANG Jimin, CAO Jianguang, et al. Numerical simulation of melting process of phase change energy storage unit under microgravity[J]. J. Beijing Univ. Aeront. Astron., 2018, 44(10):2224-2231(阮世庭, 张济民, 曹建光, 等. 微重力下相变储能单元融化过程数值模拟[J]. 北京航空航天大学学报, 2018, 44(10):2224-2231)
    [4]
    MA Caixin, SHENG Qiang, TONG Tiefeng. Thermal design and simulation of a space phase change heat exchanger[J]. Chin. J. Space Sci., 2018, 38(3):409-417(麻才新, 盛强, 童铁峰. 一种空间相变换热器热设计与仿真分析及其改进[J]. 空间科学学报, 2018, 38(3):409-417)
    [5]
    ZHANG Jingchi, SHENG Qiang, REN Weijia, et al. Numerical simulation of thermal storage device of foam composite phase change material in microgravity[J]. Chin. J. Space Sci., 2016, 36(3):336-343(张靖驰, 盛强, 任维佳, 等. 微重力条件下泡沫复合相变材料蓄热装置数值仿真[J]. 空间科学学报, 2016, 36(3):336-343)
    [6]
    ZHAO Jianfu, HU Wenrui. Novel investigation on the principle of similarity for microgravity two-phase flow[J]. J. Basic Sci. Eng., 2002, 10(1):1-7(赵建福, 胡文瑞. 微重力两相流相似模拟准则新探[J]. 应用基础与工程科学学报, 2002, 10(1):1-7)
    [7]
    YANG Xiaohu, LIU Jing. Advanced liquid metal cooling:historical developments and research frontiers[J]. China Acad. J., 2018, 36(15):54-66(杨小虎, 刘静. 液态金属高性能冷却技术:发展历程与研究前沿[J]. 科技导报, 2018, 36(15):54-66)
    [8]
    GE Haoshan, LI Haiyan, MEI Shengfu, et al. Low melting point liquid metal as a new class of phase change material:an emerging frontier in energy area[J]. Renew. Sust. Energ. Rev., 2013, 21:331-346
    [9]
    YANG Xiaohu, TAN Sicong, LIU Jing. Numerical investigation of the phase change process of low melting point metal[J]. Int. J. Heat Mass Trans., 2016, 100:899-907
    [10]
    YANG Xiaohu, TAN Sicong, DING Yujie, et al. Experimental and numerical investigation of low melting point metal based PCM heat sink with internal fins[J]. Int. Commun. Heat Mass Trans., 2017, 87:118-124
    [11]
    GE Haoshan, LIU Jing. Keeping smartphones cool with gallium phase change material[J]. J. Heat Trans., 2013, 135:1-5
    [12]
    ZHAO Jianfu, LU Yanghui, LI Zhendong, et al. Marangoni effect in subcooled nucleate pool boiling[J]. Chin. J. Space Sci., 2008, 28(2):159-163(赵建福, 鲁仰辉, 李震东, 等. 过冷核态池沸腾中的Marangoni效应[J]. 空间科学学报, 2008, 28(2):159-163)
    [13]
    ARICI M, TÜTÜNCÜ E, KAN M, et al. Melting of nanoparticle-enhanced paraffin wax in rectangular enclosure with partially active walls[J]. Int. J. Heat Mass Trans., 2017, 104:7-17
    [14]
    CHEN Chen, PENG Hao. Numerical simulation of solidification characteristics of graphene nanofluid as phase change material[J]. Chem. Ind. Eng. Prog., 2018, 37(2):681-688(陈晨, 彭浩. 石墨烯纳米流体相变材料蓄冷特性的数值模拟[J]. 化工进展, 2018, 37(2):681-688)
    [15]
    BERGMAN T L, KELLER J R. Combined buoyancy, surface tension flow in liquid matals[J]. Numer. Heat Trans., 1988, 13(1):49-63
    [16]
    MADRUGA S, MENDOZA C. Heat transfer performance and melting dynamic of a phase change material subjected to thermocapillary effects[J]. Int. J. Heat Mass Trans., 2017, 109:501-510
    [17]
    VOLLER V R, PRAKASH C. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems[J]. Int. J. Heat Mass Trans., 1987, 30(8):1709-1719
    [18]
    HONG Yuxiang, YE Weibiao, DU Juan, et al. Solid-liquid phase-change thermal storage and release behaviors in a rectangular cavity under the impacts of mushy region and low gravity[J]. Int. J. Heat Mass Trans., 2019, 130:1120-1132
    [19]
    MADRUGA S, MISCHLICH G S. Melting dynamics of a Phase Change Material (PCM) with dispersed metallic nanoparticles using transport coefficients from empirical and mean field models[J]. Appl. Therm. Eng., 2017, 124:1123-1133
    [20]
    BECKERMANN C, VISKANTA R. Effect of solid subcooling on natural convection melting of a pure metal[J]. Trans. ASME, 1989, 111:416-424
    [21]
    SHATIKIAN V, ZISKIND G, LETAN R. Numerical investigation of a PCM-based heat sink with internal fins[J]. Int. J. Heat Mass Trans., 2005, 48:3689-3706
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(598) PDF Downloads(96) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return