Volume 40 Issue 3
May  2020
Turn off MathJax
Article Contents
WANG Yanhui, ZHOU Binghong. Effect of Initial Liquid Hydrogen Temperature on the Pressure Changes in the Cryogenic Propellant Tank[J]. Journal of Space Science, 2020, 40(3): 394-400. doi: 10.11728/cjss2020.03.394
Citation: WANG Yanhui, ZHOU Binghong. Effect of Initial Liquid Hydrogen Temperature on the Pressure Changes in the Cryogenic Propellant Tank[J]. Journal of Space Science, 2020, 40(3): 394-400. doi: 10.11728/cjss2020.03.394

Effect of Initial Liquid Hydrogen Temperature on the Pressure Changes in the Cryogenic Propellant Tank

doi: 10.11728/cjss2020.03.394
  • Received Date: 2019-05-13
  • Rev Recd Date: 2019-12-24
  • Publish Date: 2020-05-15
  • The cryogenic propellant tank will be in microgravity environment for more than several hundred seconds during the MECO (Main Engine Cut-off) phase. Liquid hydrogen propellant works near its saturation temperature, which can easily cause phase transition due to heat transfer and other effects, thus affecting the pressure change of the tank. The effects of different initial cryogenic propellant temperatures on tank pressure and temperature are studied by establishing a three-dimensional CFD model. The results show that the larger the difference between the temperature of the propellant near the gas-liquid interface and the saturation temperature under the current gas pressure is, the greater the pressure drop rate is. As the gas pressure drops, the overall temperature of the ullage gas decreases, the pressure drop rate also gradually decreases, and the pressure change curve tends to flatten out. When the initial liquid propellant temperature is lower than the equilibrium temperature, the higher the initial liquid propellant temperature is, the higher the equilibrium pressure is.

     

  • loading
  • [1]
    CHU Guimin. Propellant management of cryogenic upper stage during coast[J]. Missle Space Vehcile, 2007, 287(1):27-31(褚桂敏. 低温上面级滑行段的推进剂管理[J]. 导弹与航天运载技术, 2007, 287(1):27-31)
    [2]
    ZILLIAC G, KARABEYOGLU M A. Modeling of propellant tank pressurization[C]//41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Tucson:AIAA, 2005:3549
    [3]
    KARTUZOVA O, KASSEMI M. Modeling interfacial turbulent heat transfer during ventless pressurization of a large scale cryogenic storage tank in microgravity[C]//47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. San Diego:AIAA, 2011:6037
    [4]
    CORPENING J H. Analytic modeling of pressurization and cryogenic propellant conditions for lunar landing vehicle[C]//57th JANNAF Joint Propulsion Meeting. Colorado:NASA, 2010:M10-0427
    [5]
    CHEN Hong, GAO Xu, REN Gang, et al. CFD study on discharging process of liquid hydrogen in tank with helium as pressurized gas[J]. Cryogenics, 2015, 206(4):33-38(陈虹, 高旭, 任刚, 等. 氦气作为增压气体排出贮罐内液氢过程的CFD分析[J]. 低温工程, 2015, 206(4):33-38)
    [6]
    LIU Zhan, LI Yanzhong, WANG Lei, et al. Evaporation calculation and pressurization process of on-orbit cryogenic liquid hydrogen storage tank[J]. J. Xi'an Jiaotong Univ., 2015, 49(2):135-140(刘展, 厉彦忠, 王磊, 等. 在轨运行低温液氢箱体蒸发量计算与增压过程研究[J]. 西安交通大学学报, 2015, 49(2):135-140)
    [7]
    LI Jiachao, LIANG Guozhu. Numerical simulation of phase change and heat transfer in crygenic tank under the ground and microgravity condition[J]. Chin. J. Space Sci., 2016, 36(4):513-519(李佳超, 梁国柱. 地面及微重力条件下低温贮箱内相变和传热的数值仿真[J]. 空间科学学报, 2016, 36(4):513-519)
    [8]
    LIU Zhan, SUN Peijie, LI Peng, et al. Research on thermal stratification of cryogenic liquid oxygen tank in microgravity[J]. Cryogenics, 2016, 209(1):25-31(刘展, 孙培杰, 李鹏, 等. 微重力下低温液氧贮箱热分层研究[J]. 低温工程, 2016, 209(1):25-31)
    [9]
    PLACHATA D W, CHRISTIE R J, JURNS J M, et al. Passive ZBO storage of liquid hydrogen and liquid oxygen applied to space science mission concepts[J]. Cryogenics, 2006, 46(2):89-97
    [10]
    HASTINGS L J, PLACHTA D W, SALERNO L, et al. An overview of NASA efforts on zero boil storage of cryogenics propellants[J]. Cryogenics, 2002, 41:833-839
    [11]
    SHAO Yetao, LUO Shu, WANG Haosu, et al. Research on the supercooling loading technology of cryogenic propellant and its effects on rocket performance[J]. Astronaut. Syst. Eng. Tech., 2019, 3(2):18-25(邵业涛, 罗庶, 王浩苏, 等. 低温推进剂深度过冷加注技术研究及对运载火箭性能影响分析[J]. 宇航总体技术, 2019, 3(2):18-25)
    [12]
    BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. J. Comput. Phys., 1992, 100:335-354
    [13]
    XU Jiyun. Boiling Heat Transfer and Gas-liquid Two-phase Flow[M]. Beijing:Atomic Energy Press, 2001:215-220(徐济鋆. 沸腾传热和气液两相流[M]. 北京:原子能出版社, 2001:215-220)
    [14]
    ZHOU Binghong, WANG Yanhui, GA Yongjing, et al. Model simplification method in numerical simulation of complex flow and heat transfer process of launch vehicle propellant[J]. Astronaut. Syst. Eng. Tech., 2019, 3(2):26-29(周炳红, 王妍卉, 尕永婧, 等. 运载火箭推进剂复杂流动传热问题数值模拟中的模型简化方法[J]. 宇航总体技术, 2019, 3(2):26-29)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(402) PDF Downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return