Volume 40 Issue 6
Nov.  2020
Turn off MathJax
Article Contents
JIANG Zhijie, WU Zongyu, LIU Changqing, HUANG Yiyong, HAN Wei. Liquid-gas Interface Analysis of Propellant Tank Based on Surface Evolver[J]. Journal of Space Science, 2020, 40(6): 1066-1073. doi: 10.11728/cjss2020.06.1066
Citation: JIANG Zhijie, WU Zongyu, LIU Changqing, HUANG Yiyong, HAN Wei. Liquid-gas Interface Analysis of Propellant Tank Based on Surface Evolver[J]. Journal of Space Science, 2020, 40(6): 1066-1073. doi: 10.11728/cjss2020.06.1066

Liquid-gas Interface Analysis of Propellant Tank Based on Surface Evolver

doi: 10.11728/cjss2020.06.1066
  • Received Date: 2020-09-27
  • Rev Recd Date: 2020-10-12
  • Publish Date: 2020-11-15
  • Propellant tank is an important part of spacecraft system, which is used for the management and transportation of propellant. Under the microgravity condition, the liquid-gas interface inside the propellant tank is curved. The investigation of the liquid-gas interface distribution characteristics is the premise to ensure the normal operation of the propellant tank. In this paper, Surface Evolver, an open-source surface evolution analysis software, is used to study the distribution characteristics of liquid-gas interface in spherical propellant tanks. The influences of filling ratio, contact angle, Bond number and other parameters on the liquid-gas interface are analyzed emphatically, and the variation law of the liquid-gas interface distribution in the propellant tank with each parameter is obtained. The results show that the shape of the liquid-gas interface of the spherical tank is more curved with the increase of the liquid filling ratio, and more flat with the increase of the contact angle or Bond number. Rapid analysis of the liquid-gas interface of the propellant tank is realized, which can provide guidance for the design of the propellant tank and the propellant management device.


  • loading
  • [1]
    VELDMAN A E, GERRITS J, LUPPES R, et al. The numerical simulation of liquid sloshing on board spacecraft[J]. J. Comput. Phys., 2007, 224(1):82-99
    ELITZUR S, ROSENBAND V, GANY A. Combined energy production and waste management in manned spacecraft utilizing on-demand hydrogen production and fuel cells[J]. Acta Astronaut., 2016, 128:580-583
    BERGLUND M D, BASSETT C E, KELSO J M, et al. The Boeing Delta IV launch vehicle pulse-settling approach for second-stage hydrogen propellant management[J]. Acta Astronaut., 2007, 61(1):416-424
    HIBBARD R L. Satellite on-orbit Refueling: a Cost Effectiveness Analysis[D]. California: Naval Postgraduate School, 1996
    DENG M, YUE B. Nonlinear model and attitude dynamics of flexible spacecraft with large amplitude slosh[J]. Acta Astronaut., 2017, 133:111-120
    ZHOU Z, HUANG H. Constraint surface model for large amplitude sloshing of the spacecraft with multiple tanks[J]. Acta Astronaut., 2015, 111:222-229
    GASBARRI P, SABATINI M, PISCULLI A. Dynamic modelling and stability parametric analysis of a flexible spacecraft with fuel slosh[J]. Acta Astronaut., 2016, 127:141-159
    WU Zongyu, HUANG Yiyong, CHEN Xiaoqian, et al. Surrogate modeling for liquid-gas interface determination under microgravity[J]. Acta Astronaut., 2018, 152:71-77
    CONCUS P. Static menisci in a vertical right circular cylinder[J]. J. Fluid Mech., 1968, 34(3):481-495
    BAO G. Numerical calculation of steady meniscus of liquid in a slow spin container under a micro gravity field[J]. Tech. Mech., 1994, 14(2):147-154
    YANG D, YUE B, ZHU L, et al. Solving shapes of hydrostatic surface in rectangular and revolving symmetrical tanks under microgravity using shooting method[J]. Chin. J. Space Sci., 2012, 32(1):85-91
    HASTINGS L J, RUTHERFORD Ⅲ R. Low Gravity Liquid-Vapor Interface Shapes in Axisymmetric Containers and a Computer Solution[R]. Washington: NASA, 1968
    WANG Zhaolin, DENG Zhongping. Sloshing of liquid in spherical tank at low-gravity environments[J]. Chin. J. Space Sci., 1985, 5(4):294-302(王照林, 邓重平. 失重时球腔内液体晃动特性的研究[J]. 空间科学学, 1985, 5(4):294-302)
    CHEN Y. Meniscus Stability in Rotating Systems[D]. Bremen: University of Bremen, 2015
    STARK J, BRADSHAW R, BLATT M. Low-g Fluid Behavior Technology Summaries[R]. Washington: NASA, 1974
    DODGE F T. Further Studies of Propellant Sloshing Under Low-Gravity Conditions[R]. Washington: NASA, 1971
    THIBAUT A, CHEURET F, MARRAFFA L. Numerical and experimental investigation on the interface shape of cryogenic fluids in microgravity and spinning conditions[C]//7th European Symposium on Aerothermodynamics. Belgien: ESA, 2011
    LI Zhangguo, LIU Qiusheng, JI Yan, et al. Numerical simulation of liquid-vapor interface tracking in tank of spacecraft[J]. Chin. J. Space Sci., 2008, 28(1):69-73(李章国, 刘秋生, 纪岩, 等. 航天器贮箱气液自由界面追踪数值模拟[J]. 空间科学学报, 2008, 28(1):69-73)
    CHEN Lei, LI Yong, LIU Jintao, et al. Numerical simulation of fluid distribution in a vane type tank for on-orbit refueling[J]. Aerospace Control Appl., 2016, 42(5):53-62(陈磊, 李永, 刘锦涛, 等. 一种板式贮箱在轨加注过程流体分布的数值模拟[J]. 空间控制技术与应用, 2016, 42(5):53-62)
    BRAKKE K A. The surface evolver[J]. Exp. Math., 1992, 1(2):141-165
    ZHANG Liang, LI Zhendong, ZHAO Jianfu, et al. Fluid interface in space cryogenic propellant tank (A)[C]//National Conference on Multiphase Flow of CSET. Xi'an: Chinese Society of Engineering Thermophysics, 2014(张良, 李震东, 赵建福, 等. 空间低温推进剂贮箱内流体界面研究(A)[C]//西安: 中国工程热物理学会多相流学术会议中国工程热物理学会, 2014)
    LI Yongqiang, YE Zhijun, LI Lihui. Surface Evolver calculation of free liquid surface configuration under microgravity[J]. J. Northeastern Univ.: Nat. Sci., 2016, 37(9):1364-1368(李永强, 叶致君, 李利辉. 微重力状态下自由液面构型的Surface Evovler软件计算[J]. 东北大学学报: 自然科学版, 2016, 37(9):1364-1368)
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(172) PDF Downloads(43) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint