中文核心期刊
CNKI期刊全文数据库
中国科学引文数据库(CSCD)源期刊
中国科技论文统计源期刊
万方数据知识服务平台
英国《科学文摘》(SA)
美国化学文摘(CA)
俄罗斯《文摘杂志》(AJ)
德国《天文学与天体物理学文摘》(AAA)
英国《中国天文学和天体物理学》(SCI收录)全文摘译期刊之一
《中国学术期刊文摘》
《中国物理文摘》
《中国天文学文摘》

• 论文 • Previous Articles     Next Articles

Numerical Research About Interaction Between Two Tube Models Containing Spiral Magnetic Field Lines With a Little Small Length-Scale

YE Zhanyin   

  1. (Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190)
  • Received:1900-01-01 Revised:1900-01-01 Online:2008-05-15 Published:2008-05-15

Abstract: After a long time interaction, governed by the magnetohydrodynamic (MHD) equations, between the Parker solar wind flow and a potential magnetic field combined by a dipole and a hexapole, a special streamer background structure in the solar meridian plane is presented. With the background structure, two tube models containing spiral magnetic field lines with a small length-scale can move in the computational domain step by step, interact afterward and trigger a Coronal Mass Ejection (CME) finally. The tube model is approached by a structure made up of two-dimensional co-circular magnetic field lines, with a ratio of the plasma pressure at its center to that at its edge m=2 and with a radius a for two cases: a=0.07 Rs (Rs is the solar radius) and a=0.1 Rs respectively. Corresponding to the two cases, two typical numerical results are obtained. In the case a=0.07 Rs, the two tube models interact with each other, merge into one set of co-circular magnetic field lines in seven solar radii and propagate outward. In the other case a=0.1 Rs, the two tube models do not merge into one and keep two sets of co-circular magnetic field lines exist in the computational domain during their propagation as a whole.

Key words: Solar flare, Solar proton events, Time processes