中文核心期刊
CNKI期刊全文数据库
中国科学引文数据库(CSCD)源期刊
中国科技论文统计源期刊
万方数据知识服务平台
英国《科学文摘》(SA)
美国化学文摘(CA)
俄罗斯《文摘杂志》(AJ)
德国《天文学与天体物理学文摘》(AAA)
英国《中国天文学和天体物理学》(SCI收录)全文摘译期刊之一
《中国学术期刊文摘》
《中国物理文摘》
《中国天文学文摘》

• 论文 • Previous Articles     Next Articles

Analysis of the Characteristics of the Stratospheric Quasi-zero Wind Layer Over China

XIAO Cunying;HU Xiong;Gong Jiancun;LIU Jia   

  1. (1.Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100080; 2.Graduate University of Chinese Academy of Sciences)
  • Received:1900-01-01 Revised:1900-01-01 Online:2008-05-15 Published:2008-05-15

Abstract: The characteristics of the stratospheric quasi-zero wind layer and its seasonal and geographic variation features over China are obtained by using the ERA-40 reanalyzed wind data which are provided by ECMWF. Results show that quasi-zero wind layer generally exists at the height range of 18--25 km and some variation of the height of the zero wind line would happen when the time or location change. According to the latitudinal variation of the quasi-zero wind layer, the atmosphere over China could be divided into three parts to discuss its features: low-latitude area (5ºN~20ºN), transition area (20ºN~32.5ºN), middle- and high-latitude area (32.5ºN~55ºN). The quasi-zero wind layer may exist in winter and at the beginning of spring in low-latitude area. In middle-and high-latitude area, the quasi-zero wind layer may be found at the end of spring and in summer. The quasi-zero wind layer in transition area relates to the equatorial quasi-biennial oscillation (QBO). During the easterly phase of QBO, the characteristics of the transition area are similar to that of the middle-latitude area, while during the westerly phase of QBO, its characteristics are similar to that of the low-latitude area. The quasi-zero wind layer varies little with the longitude. The longitudinal variation of the height of zero wind line may not exceed 2 km. However, this variation is relatively larger in the transition area.

Key words: Solar X-EUV imaging telescope, Image compression coding, Lifting wavelet, Modified SPIHT, Time difference, Orbital planes included angle